Cover Image

Effect of interleukin-1beta and dehydroepiandrosterone on the expression of lumican and fibromodulin in fibroblast-like synovial cells of the human temporomandibular joint

K. Okamoto, N. Kiga, Y. Shinohara, I. Tojyo, S. Fujita
  • N. Kiga
    Wakayama Medical University, Japan
  • Y. Shinohara
    Wakayama Medical University, Japan
  • I. Tojyo
    Wakayama Medical University, Japan
  • S. Fujita
    Wakayama Medical University, Japan

Abstract

Several epidemiological studies have reported that temporomandibular disorders (TMDs) are more prevalent in women than in men. It has recently been proposed that sex hormones such as estrogen, testosterone and dehydroepiandrosterone (DHEA) are involved with the pathogenesis of TMDs. Although studies have investigated the relationship between estrogen and testosterone and the restoration of TMDs, the relationship between DHEA and TMDs is unknown. The synovial tissue of the temporomandibular joint (TMJ) is made up of connective tissue with an extracellular matrix (ECM) composed of collagen and proteoglycan. One proteoglycan family, comprised of small leucine-rich repeat proteoglycans (SLRPs), was found to be involved in collagen fibril formation and interaction. In recent years, the participation of SLRPs such as lumican and fibromodulin in the internal derangement of TMJ has been suggested. Although these SLRPs may contribute to the restoration of the synovium, their effect is still unclear. The purpose of this study was to investigate the effect of DHEA, a sex hormone, on the expression of lumican and fibromodulin in human temporomandibular specimens and in cultured human TMJ fibroblast-like synovial cells in the presence or absence of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). In the in vivo study, both normal and osteoarthritic (OA) human temporomandibular synovial tissues were immunohistochemically examined. In the in vitro study, five fibroblast-like synoviocyte (FLS) cell lines were established from human TMJ synovial tissue of patients with osteoarthritis. The subcultured cells were then incubated for 3, 6, 12 or 24 h with/without IL-1beta (1 ng/mL) in the presence or absence of DHEA (10 μM). The gene expression of lumican and fibromodulin was examined using the real-time polymerase chain reaction (PCR) and their protein expression was examined using immunofluorescent staining. We demonstrated that the expression of lumican significantly differs from that of fibromodulin in synovial tissue in OA and furthermore, that IL-1beta induced a significant increase in lumican mRNA and immunofluorescent staining in FLS compared to cells without IL-1beta. DHEA plus IL-1beta induced a significant increase in fibromodulin, but not in lumican mRNA, compared to DHEA alone, IL-1beta alone and in the absence of DHEA and IL-1beta. In immunofluorescent staining, weaker fibromodulin staining of FLS cells was observed in cells cultured in the absence of both DHEA and IL-1beta compared to fibromodulin staining of cells cultured with DHEA alone, with DHEA plus IL-1beta, or with IL-1beta alone. These results indicate that DHEA may have a protective effect on synovial tissue in TMJ by enhancing fibromodulin formation after IL-1beta induced inflammation. DHEA enhancement of fibromodulin expression may also exert a protective effect against the hyperplasia of fibrous tissue that TGF-beta1 induces. In addition lumican and fibromodulin are differentially expressed under different cell stimulation conditions and lumican and fibromodulin may promote regeneration of the TMJ after degeneration and deformation induced by IL-1beta.

Keywords

Temporomandibular joint; dehydroepiandrosterone; lumican; fibromodulin; small leucine rich repeat proteoglycan.

Full Text

PDF
HTML
Submitted: 2014-07-24 13:05:18
Published: 2015-02-23 10:50:55
Search for citations in Google Scholar
Related articles: Google Scholar
Abstract views:
609

Views:
PDF
190
HTML
221

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2015 K. Okamoto, N. Kiga, Y. Shinohara, I. Tojyo, S. Fujita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 
© PAGEPress 2008-2017     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185