
SUMMARY

During embryogenesis and the postnatal period,
neurons and glia interact in the development and
differentiation of specific populations of nerve cells.
Both in the peripheral (PNS) and in the central ner-
vous system (CNS), glial cells have been shown in
various experimental conditions to constitute a
favorable substrate for neural adhesion, neural
polarity, shape and axonal extension, while numer-
ous soluble molecules secreted by neurons influ-
ence the survival and differentiation of the glial
cells themselves. The aim of the present work was
to investigate the influence of postnatal Schwann
cells (SC) on embryonic serotoninergic (5-HT) neu-
rons of the raphe, in order to study the possible
influence of the peripheral glia on the CNS neurons.
Cultures of SC from sciatic nerve of postnatal rats
and neurons from rat embryonic rhombencephalon
were successfully established and cells were
immunocytochemically characterized. The number
of 5-HT neurons, and the number and length of their
branches were quantified in the cultures of 5-HT
neurons, in cultures added with Nerve Growth Fac-
tor (NGF) and Insulin-like Growth Factor I (IGF-I),
in co-cultures with SC and in cultures added with
conditioned medium obtained from SC cultures.

367

The results indicated that SC have the capacity to
promote the survival and growth of 5-HT neurons
in culture, and that this activity is mediated by sol-
uble factors. Although the precise nature and mech-
anism of action of the growth factor or factors pro-
duced by SC in the presence of 5-HT neurons was
not identified, our results add more data on the pos-
sible activity of the peripheral glia in promoting
and enhancing the survival and outgrowth of the
CNS neurons.

INTRODUCTION

During embryogenesis and the postnatal period
neurons and glia in the central nervous system
(CNS) and the peripheral nervous system (PNS)
interact on the survival, maturation, migration and
differentiation of specific neural and glia popula-
tions of cells. The possible mechanisms involved
in the mutual relationship between neurons and
glia have been extensively investigated. In the
CNS, in fact, astrocytes have been shown to pro-
duce a wide variety of trophic factors affecting the
development and survival of different neuronal
cell types (Barde, 1989; Knusel et al., 1990;
Hymanet al., 1991; Mayeret al., 1993; Beck et
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al., 1993; Hyman et al., 1994; Murphy et al.,
2000), the morphology of isolated neurons in vitro
(Banker et al., 1980; Muller and Seifert, 1982;
Hatten et al.,1988) and the function of neurons by
regulating their size, synthesis of transmitter
enzymes and neuritic outgrowth (Purves, 1988;
Snider and Johnson, 1989; Franke et al., 2000).
Conversely, the reciprocal influence of neurons
and glia was established by the demonstration that
trophic factors produced by neurons significantly
promote the proliferation, morphology, maturation
and survival of astroglia and oligodendroglia cells
(Hatten, 1985).
A close interaction between neuronal and glial

cells also occurs in the PNS. Nerve growth factors
support the survival of cultured sympathetic neu-
rons (Barde et al.,1982), and members of the neu-
rotrophin gene family are expressed by developing
sensory and motor neurons (Friedmanet al.,1991;
Russel et al., 2000). Schwann cells (SC) produce
neurotrophic factors that activate specific cell sur-
face receptors, which start a cascade of intracellu-
lar events modifying neuronal morphology, sur-
vival and/or functional capacity (Yuen et al., 1996;
Munson et al.,1997).
The close interaction between nerve cells and

glial cells is present during the adult lifetime
(Mirsky et al., 1999) and probably trophic sub-
stances are continuously produced acting as fac-
tors necessary for normal neuronal function and
survival (Levi—Montalcini, 1987; Ruit and
Snider, 1991; Longo et al.,1992; Holtzman et al.
1995, Friedman et al., 1999). The amount of troph-
ic factors are likely to increase during degenerative
and especially regenerative processes of the ner-
vous tissue. For instance, Nerve Growth Factor
(NGF) mRNA and Brain-derived Neurotrophic
Factor (BDNF) mRNAare upregulated after axo-
tomy of the peripheral nerve at the lesion site and
in the distal stump, at the same time when SC
express on their surface a large amount of the p75
low affinity receptor for neurotrophins. Consider-
ing the reparative capacities of the PNS, and the
great abundance of growth factors produced by SC
(Frostick et al., 1998), it has been suggested that
SC might influence repair and regeneration also in
the CNS (Xu et al.,1995). 
Studies by Collier et al. (1993, 1999) have shown

that SC are able to secrete a diffusible molecule or
a combination of molecules that influence the sur-
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vival and axonal outgrowth of embryonic
dopaminergic neurons. These data have induced
us to verify if postnatal SC have the capacity to
influence in the same way the survival and the
neuronal branching of other central monoamine
neurons. In CNS, monoamine neurons are distrib-
uted in different areas, such as the locus coeruleus
(containing norepinephrine), the substantia nigra
(containing dopamine) and the raphe nuclei (con-
taining serotonin) (Dahlstrom and Fuxe, 1964). 
In this study, we determined the relation between

SC and serotoninergic (5-HT) neurons in culture.
The results showed that SC significantly increased

the number and the dendritic sprouting of 5-HT
neurons, and that this effect was probably mediated
by soluble factors.

MATERIALS AND METHODS

Neuronal Cultures
Cell suspensions were prepared from rat embryos

(crown-rump length 10-11 mm). Pregnant female
rats (Sprague Dawley, Nossan) were anaesthetized
in ether. The embryos were removed by caesarian
section and placed in cold Leibowitz L-15 medium
(4°C) where all dissection processes were carried
out. The rostral rhombencephalon, which contains
developing 5-HTneurons from the raphe complex
(Konig et al.,1988), was dissected out and pieces of
tissue were incubated for 6 min in 0.1% trypsin in a
solution of 0.1 M phosphate-buffered saline (PBS),
pH 7.4, containing 0.02% EDTA at 37°C. Then
0.001% deoxyribonuclease was added and the cells
were centrifuged; the supernatant was removed and
the cells were resuspended and triturated through a
fire-polished Pasteur pipet in 1 ml of triturating
solution [1% bovine serum albumine (BSA),
0.001% DNAse, 0.1% soybean trypsin inhibitor in
PBS].
Dissociated cells were then plated on 13 mm

diameter poly-L-lysine (PLL; 10 mg/ml) coated
glass coverslips at a final density of 2x104

cells/coverslip and maintained in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with
10% fetal calf serum (FCS), 2 mM L-glutamine,
penicillin (50 mg/ml) and streptomycin (50 U/ml).
Contaminating non-neuronal cells were reduced by
treatment with the antimitotic agent cytosine arabi-
noside (10-5 M) added 24 h after the dissection.
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Cells were incubated in this medium for a week
with two medium changes. Some wells containing
neurons were treated with NGF 2.5 S (Boehringer
Mannheim, 50 ng/ml) or IGF I (Insulin-like Growth
Factor, somatomedin C, Boehringer Mannheim, 10
ng/ml).

Schwann cell cultures
SC were isolated from the sciatic nerves of 2-day

old rat pups (P2) using the procedure described by
Brockes et al. (1979). Briefly, sciatic nerves were
removed and treated with 0.1% collagenase and
2.5% trypsin in DMEM, mechanically dissociated
by trituration and filtration through a 150 mm
nylon mesh. Cells were resuspended in fresh com-
plete medium and plated at a density of 5x106

cells. Cytosine arabinoside (10-5 M) was added 24
h after initial plating to reduce the number of
dividing fibroblasts. To eliminate fibroblasts that
survived the antimitotic agent, SC cultures were
treated with monoclonal antibody Anti-thy 1.1
(Serotec) and a rabbit complement (Cedarlane
Lab.). Fibroblast contamination was minimal after
this stage (about 1.5%).

5-HT Neuron-SC co-cultures
Dissociated SC at a final density of 1.5x104

cells/coverslip were plated onto coverslips con-
taining 5-HTneurons as previously described. 
Both neuronal cultures and co-cultures were kept

at 37°C with 5% CO2 for a week and then were
processed for immunocytochemical staining.

Preparation of conditioned medium
The conditioned medium (CM) was obtained from

SC cultures grown in DMEM supplemented with
10% FCS, 2 mM L-glutamine, penicillin/strepto-
mycin. The cultures were washed several times with
fresh medium. After 3 days, the CM was removed
from the cultures and immediately passed through a
membrane filter (0.2 mm pore diameter) to remove
cells and debris. The retained medium was resus-
pended in fresh medium and added to the serotonin-
ergic neuronal cultures.

Immunocytochemistry
Individual populations of cells were identified by

immunocytochemical procedures. The cells were
fixed by exposure to 4% paraformaldehyde in 0.1 M
PBS for 30 minutes. After washing in PBS, the cell
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membranes were permeabilized with 5% normal
goat serum (NGS) in PBS containing 0.1% Triton
X-100 (PBS-Triton) at room temperature for 15
min. This step was followed by incubation
overnight at 4°C in the primary antibody, a poly-
clonal anti-serotonin (Incstar) used at the concen-
tration 1:100. Co-cultures were incubated overnight
both with anti-serotonin and with monoclonal anti-
Nerve Growth Factor receptor (anti-NGFr,
Boehringer Mannheim) at the concentration 1:10
which reacts with the low affinity NGF-receptor.
All primary antibodies were diluted in PBS-Triton
containing 1% NGS. After washing in PBS, cover-
slips were incubated in secondary antibody,
[dichlorotriazihyl amino (DTAF) labelled anti- rab-
bit antibody (Jackson Immuno Res. Lab.) at the
concentration 1:50 to visualize the polyclonal pri-
mary antibody (anti-serotonin) and tetramethyl rho-
damine isothiocyanate (TRITC) labelled anti-
mouse antibody (Jackson Immuno Res. Lab.) at the
concentration 1:50 to visualize monoclonal anti-
body (NGFr)] in PBS-Triton containing 1% NGS,
at 4°C for 30 min. Coverslips were washed and
mounted in PBS/glycerol (50:50) and placed on
glass microscope slides.
In all instances negative controls without prima-

ry antibody were performed.

Morphometric study
Coverslips were analysed on a Leitz fluorescent

microscope and 5-HTpositive neurons were count-
ed over the entire coverslips. Moreover, for each 5-
HT positive neuron, the number of neuronal
branches and total length of fibers were determined
using image analysis. For each culture condition, a
minimum of 10 experiments were carried out, the
means were subsequently obtained and data were
assessed by statistical analysis: fiber length data
were tested by the Friedman Test and the number of
neurons was tested by the Wilcoxon’s Test.

RESULTS

Effects of growth factors on survival and
branching of serotoninergic neurons
Surviving 5-HT neurons kept for 7 days under

previously described culture conditions, increased
after treatment with NGF or IGF-I. Figure 1 shows
the clear difference between controls and trophic
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factor-treated cultures. In NGF-treated cultures, we
obtained a higher number of 5-HTneurons as com-
pared to control (109 vs 40 per coverslip, P<0.05)
while in IGF-I-treated neurons the increase (68 per
coverslip) was not significant. These results
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demonstrate that survival of the serotoninergic
neurons is enhanced in the presence of specific
growth factors, although the increase in number of
neurons reached statistical significance only when
NGF was added to the culture.

Fig. 1 - The influence of
trophic factors and SC on the
survival of serotoninergic
neurons after 7 days in vitro.
The neuron counts are
expressed as absolute num-
bers. Histograms show the
increase in number of neu-
rons when treated with NGF
(P< 0.05), IGF-I (not signifi-
cant) when co-cultured with
SC (P< 0.05) or incubated
with CM (P< 0.05).

Fig. 2 - Histograms show the length of
processes (Pr) exhibited by serotoninergic
neurons under each culture condition. Con-
trol cultures presented short processes by
contrast to long processes exhibited by sero-
toninergic neurons in the presence of NGF,
IGF-I, SC (P< 0.05) or incubated with CM 
(P<0.05).
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Computerized measurements of immunocyto-
chemically stained 5-HTneurons indicated that
these cells exposed to trophic factors, such as NGF
or IGF I, exhibited a greater complexity and degree
of neuritic and dendritic outgrowth than in controls. 
As shown in Figures 2, 3Aand 4A, in control cul-

tures serotoninergic neurons exhibited short
processes (Pr-1 = 29 mm) whereas in the presence of
NGF (Fig. 2, 3B and 4B) or IGF-I (Fig. 2, 3C and
4C), the 5-HTneurons presented an increase in den-
dritic length, branching and number of primary den-
drities with an average length of 50 mm if treated
with NGF and about 60 mm if treated with IGF-I.
These findings demonstrate the capability of

NGF and IGF-I to induce greater axonal and den-
dritic branching showing more branch points than
control cultures.

Schwann cell-derived factors stimulate sero-
toninergic neuron survival and branching
We found a clear increase in the number of sur-

viving 5-HT neurons when embryonic rhomben-
cephalic neurons were co-cultured with primary
SC for 7 days.
The number of neurons grown in the presence of

SC was more than four times as high as controls
(189 vs 40 per coverslip, P<0.05). The co-cultures
with SC had a higher number of neurons than the
cultures treated with NGF or IGF-I but this
increase did not reach statistical significance.
These data suggest that, in our experimental con-
ditions, SC contribute to promote the survival of 5-
HT neurons. In addition, these experiments have
shown that not only the number of surviving neu-
rons increased but also a significant increase in
cell body size was observed (Fig. 3A,D) using
image analysis.
As described above, in co-cultures, SC exerted a

positive effect on serotoninergic neuron survival,
accompanied by a significant increase in the length
and branching processes (Pr-1= 128 mm ).
Figures 2 , 3D and 4F show that, in the presence

of SC, the length of neurites was four times as long
as in controls and two times as long as those cul-
tured with growth factors. Moreover, their length
was also increased with more branch points com-
pared to those 5-HTneuron cultures without SC
(Figure 3A-E). Therefore, the results indicate that
SC promote an increase in axonal and dendritic
extension.
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Effect of SC conditioned medium (CM) on sero-
toninergic neuron survival and morphology
To determine whether SC supported serotoniner-

gic neuron survival through a release of soluble
factors, CM was tested for a neurotrophic effect
on serotoninergic neurons. Figure 1 shows that
these cultures presented an increase in the number
of 5-HTneurons (178 vs 40 per coverslip P<0.05),
accompanied by an evident and dense axonal and
dendritic outgrowth (Fig. 3E and 4D).
In all the different experimental conditions, the 5-

HT neurons in culture did not express the low affin-
ity NGFr, while SC were always NGFr positive.

DISCUSSION

In the present workwe demonstrate that postna-
tal SC have the capacity to promote the survival
and growth of embryonic cultured rhomboen-
cephalic serotoninergic neurons. This property is
probably mediated via soluble trophic factors,
considering that the same results were obtained
when the cultures of 5-HTneurons were co-cul-
tured with SC or incubated with a conditioned
medium derived from SC cultures. SC and their
trophic factors have a remarkable effect not only
on the survival of the serotoninergic neurons but
also on their axonal and dendritic outgrowth,
increasing their number and enhancing their
length. Often the axonal branching was clearly
directed toward the surrounding SC, perhaps indi-
cating a particular tropism of the growing neuritic
arborization in the direction of the cells that pro-
duce the trophic factors.
We obtained similar results incubating the 5-HT

neurons cultures with NGF or with IGF-I. NGF,
besides its well known activity on the sympathetic
ganglion cells (Levi-Montalcini and Angeletti,
1968; Thoenen et al.,1971; Snider et al.,1988) has
a relevant trophic effect also on basal forebrain
cholinergic neurons and on sensory neurons,
increasing the number of surviving neurons, the
total length of neurites and the number of branching
points ( Gnahn et al, 1983; Hefti et al.,1985; Hagg
et al., 1989; Holtzman et al.,1995; Gavazzi et al.,
1999). IGF-I and IGF-II stimulate the differentia-
tion of dopaminergic neurons in culture (Knusel et
al., 1990), regulating the growth of 5-HTand tyro-
sine hydroxylase neurons (Liu and Lauder, 1992),
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and neurite outgrowth in cultured motor, sensory,
sympathetic, cortical neurons, and neuronal differ-
entiation of stem cells (Brooker et al., 2000). More-
over, IGF-I rescues SC from apoptosis (Delaney et
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al.,1999) and enhances the formation of regenerat-
ed axons in SC implants if it is combined with
Platelet-Derived Growth Factor (Oudega et al.,
1997). The results of our study demonstrate that

Fig. 3 - Camera lucida drawings of repre-
sentative serotoninergic neurons in dif-
ferent conditions. Control cultures of
serotoninergic neurons (A) showed a
short neuritic and dendritic arborization.
In the presence of NGF (B) and IGF-I
(C), the cultures of serotoninergic neu-
rons exhibited a greater complexity of
neurite and dendritic outgrowth than in
controls. In co-cultures with SC (D),
serotoninergic neurons showed a signifi-
cant increase in the length and branching
of processes and in the cell body size
(data not shown). In the presence of CM
(E), serotoninergic neurons showed an
increase in neuritic and dendritic out-
growth with a high degree of complexity
and an increase in the cell body size, in
analogy to that observed in co-cultures
with SC.
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Fig. 4 - Fluorescence photomicrograph showing anti-serotonin immunocytochemical staining of neurons in different culture con-
ditions. A) 5-HT positive neurons observed in control culture. B) 5-HTpositive neurons grown in the presence of NGF (50
ng/ml). C) 5-HTpositive neurons grown in the presence of IGF-I (10 ng/ml). D) 5-HTneurons grown in the presence of CM
from SC. E) anti-NGFr positive SC and 5-HTneurons (F) both grown in the same co-culture.
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NGF has a significant effect on the survival of sero-
toninergic neurons while the effect of IGF-I was less
pronounced and not statistically significant. Con-
versely, both trophic factors had the same positive
effect on neuritic and dendritic arborization, result-
ing in a higher degree of complexity of dendritic
branching. Although effective, the influence of NGF
or IGF-I on survival and neurite outgrowth of 5-HT
neurons was less pronounced than that obtained
with SC or CM obtained from SC cultures. All these
data seem to suggest that the positive effect of SC
cultures on 5-HTcultured neurons is mediated
through trophic factors, such as NGF or IGF-I: the
more efficacious activity of SC cultures might be
due to a larger production of a single trophic factor
or, more probably, to the secretion of numerous
trophic substances which could have a synergic and
additive effect on the target cell. It is possible that
the factors released by SC cultures act as substrate-
bound agents promoting neurite outgrowth. It is
known that the RN22 Scwannoma secretes agents
which bind to tissue culture substrates to promote
neurite outgrowth. According to this, SC could
release a substrate-bound factor increasing 5-HT
neuron attachement rather than survival. SC have
been in fact demonstrated to have the capacity to
produce not only NGF (Henderson et al.,1993) and
IGF-I (LeRoith, 1993), but also Epidermal Growth
Factor (EGF) (Morrison et al.,1987, 1988), BDNF
(Koliatsos et al.,1993), acidic and basic Fibroblast
Growth Factor (aFGF and bFGF) (Morrison, 1986,
1988; Walicke et al.,1986; Murphyet al.,1990) and
Ciliary Neurotrophic Factor (CNTF) (Sendtneret
al., 1994). It remains to be shown which trophic fac-
tors are produced by SC in the experimental condi-
tions that we set up, considering that the type and
amount of trophic substances secreted change in
relation to the particular enviroment and, in particu-
lar, in relation to the target.
Neuron-glia interactions appear to be of main rel-

evance not only during embryogenesis and the
postnatal period but also during the process of
degeneration and regeneration of the nervous sys-
tem. Astrocytes more than fibroblasts have the
capacity to facilitate neurite outgrowth of sero-
toninergic neurons (Liethet al.,1990), and in co-
culture systems, where astrocytes and neurons
grow together in the same enviroment but not in
direct contact, it has been demonstrated that the
regulation of axonal sprouting is mediated via a
diffusible factor produced by astrocytes (Qian et
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al., 1992). The expectation behind the studies on
the neuron-glia relationship is that, by improving
our knowledge of the mechanisms of the trophic
effect on neuronal survival and growth, it could
be, at least theoretically, possible to enhance
regenerative and possibly to decrease degenera-
tive processes of the nervous system (Terenghi,
1999). The use of neurotrophic factors has been
suggested in neurological disorders such as
Alzheimer’s disease and Parkinson’s disease and,
in fact, the data of this study support their use in
degenerative diseases of the CNS involving sero-
toninergic neurons of the raphe, such as progres-
sive supranuclear palsy (Holtzman et al.,1994).
Given the remarkable capacities of regeneration

and recovery of the PNS, and considering that the
process is at least partially mediated by the activity
of SC, grafts of SC cultures have been made to
mammalian brain or spinal cord in order to promote
axonal regeneration (Kromer and Cornbrooks,
1985; Paino and Bunge, 1991; Bunge, 1991, 1994;
Xu et al., 1994). Similary, Aguayo et al. (1985) have
shown that SC are essential elements in trophic sup-
port of central axon regrowth in peripheral nerve
grafts. It appears, therefore, reasonable to utilize SC
as a source of neurotrophic factors, taking into
account that it is now possible to obtain a large num-
ber of SC in cultures (Rutkowski et al.,1992) and
that SC can be transplanted in nervous tissue
(Tuszynski et al, 1998). Our study adds further data
on the capacity of postnatal SC to promote survival
and growth of CNS neurons, particularly serotonin-
ergic neurons, but more effort is needed to precisely
clarify the nature of the trophic factors produced by
SC and their mechanism of action on the target cells
of the CNS.
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