European Journal of Histochemistry

SUPPLEMENTARY MATERIAL

DOI: 10.4081/ejh.2020.3084

Chronic cypermethrin exposure alters mouse embryonic stem cell growth kinetics, induces Phase II detoxification response and affects pluripotency and differentiation gene expression

Paola Rebuzzini,¹ Cinzia Civello,¹ Edouard Nantia Akono,² Lorenzo Fassina,^{3,4} Maurizio Zuccotti,^{1,4} Silvia Garagna^{1,4}

¹Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy ²Department of Biochemistry, University of Bamenda, Bambili, Cameroon ³Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy ⁴Centre for Health Technologies (C.H.T.), University of Pavia, Italy

Correspondence: Silvia Garagna, Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy. Tel. +39.0382.986323 – Fax: +39.0382.986270. E-mail: silvia.garagna@unipv.it

Key words: Cypermethrin; embryonic stem cells; cell growth; apoptosis; reactive oxygen species; detoxification response.

Gene	Forward	Reverse	Amplicon length - bp
Cat	5' TCATCAGGGATGCCATATTGT 3'	5' ACTCCAGAAGTCCCAGACCAT 3'	101
Gpx1	5' CTACACCGAGATGAACGATCTG 3'	5' CTTGCCATTCTCCTGGTGTC 3'	100
Gpx4	5' TGTGGAAATGGATGAAAGTCC 3'	5' ACGCAGCCGTTCTTATCAAT 3'	100
Sod1	5' TGTCCATTGAAGATCGTGTGA 3'	5' TTGCCCAAGTCATCTTGTTTC 3'	94
Sod2	5' CTTACAGATTGCTGCCTGCTC 3'	5' GTAGTAAGCGTGCTCCCACAC 3'	97
Cyplal	5' CTGCCTAACTCTTCCCTGGAT 3'	5' ATGTGGCCCTTCTCAAATGTC 3'	107
Cyp1b1	5' CCAGGTGCAAACTTGAGACA 3'	5' TGTCTGCACTAAGGCTGGTG 3'	250
Nqo1	5' TTCTCTGGCCGATTCAGAGT 3'	5' TCTGGTTGTCAGCTGGAATG 3'	306
Gsta 1	5' CTTCTGACCCCTTTCCCTCT 3'	5' GCCAGTATCTGTGGCTCCAT 3'	183
Ugtla6	5' ATTGCCTCAGACCTCCTCAA 3'	5' GAGACCATGGATCCCAAAGA 3'	236
Oct-4	5' GTGGAGGAAGCCGACAACAATG 3'	5' CACCTCACACGGTTCTCAATGC 3'	107
Nanog	5' CTGCTACTGAGATGCTCTGCAC 3'	5' AGCTTTTGTTTGGGACTGGTAG 3'	106
Fgf5	5' TGTGTCTCAGGGGATTGTAGG 3'	5' CATCCGTAAATTTGGCACTTG 3'	101
Brachyury	5' CTCTAAGGAACCACCGGTCA 3'	5' AGCATGGACAGACAAGCAGA 3'	100
Foxa2	5' AAATGAGAGGCTGAGTGGAGA 3'	5' GGCCCATCTATTTAGGGACAC 3'	110
β2m	5' GAATTCACCCCCACTGAGACT 3'	5' TGCTTGATCACATGTCTCGAT 3'	103

Supplementary Table 1. Sequences of the forward and reverse primers used for the gene expression analysis.

press

Supplementary Table 2. Distribution of control (CTR) and exposed R1 ESCs and 3T3 cells to cypermethrin (CYP) at their respective LD_{50} dose (0.3 or 0.6 mM) during the cell cycle phases.

	Samples (µM)	Hours	Frequency of cells (mean±SD)		
		nours	G0/G1	S	G2/M
	CTR	12	26.9±4.4	48.9±2.8	24.4±1.6
	СҮР		29.7±1.1	47.6±1.0	22.7±0.7
	CTR	24	31.6±2.9	54.2±3.1	14.2±0.3
R1	СҮР	27	31.5±0.5	53.3±0.7	15.2±0.3
KI	CTR	48	29.1±2.2	52.8±1.6	18.1±1.0
	СҮР	48	25.7±0.6*	51.6±0.3	22.7±0.6*
	CTR	72	30.9±1.4	54.0±1.4	15.1±0.8
	СҮР		24.3±1.3*	54.6±0.9	21.1±1.8*
	CTR	8	65.0±4.0	15.9±1.9	19.0±2.7
	СҮР		62.3±1.5	17.1±0.6	20.6±2.2
	CTR	24	67.1±1.7	14.3±1.1	18.6±1.4
3T3	СҮР		67.9±3.2	15.1±1.4	17.0±1.8
515	CTR	48	68.6±1.4	14.0±0.6	17.4±0.8
	СҮР		79.2±1.4*	11.1±0.8*	9.7±2.0*
	CTR	72	66.6±0.7	15.9±0.4	17.5±0.9
	СҮР		68.1±1.3	15.2±0.7	16.6±1.4

*P<0.001, when compared to CTR.

Supplementary Table 3. Fold-change values of redox-related, phase I and phase II gene transcripts, relative to CTR, of R1 cells exposed to 0.3 mM cypermethrin for 12, 24, 48 or 72 h.

		Hours				
Groups	Genes	12	24	48	72	
	Catalase	1.49 ± 0.64	1.05 ± 0.11	$4.06 \pm 1.69^{\#}$	2.67 ± 1.71	
Dad	Sod1	1.19 ± 0.47	$0.67 \pm 0.13*$	$2.24 \pm 0.68^{\#}$	$2.02 \pm 0.55*$	
related	Sod2	1.42 ± 0.50	0.98 ± 0.11	$3.17 \pm 0.70^{\#}$	$1.93 \pm 0.77*$	
relateu	Gpx1	1.29 ± 0.20	0.83 ± 0.10	1.19 ± 0.38	$1.52 \pm 0.41*$	
	Gpx4	1.15 ± 0.46	1.10 ± 0.09	$2.00 \pm 0.01^{\#}$	$1.72 \pm 0.20*$	
Phase I	Cyp1a1	0.95 ± 0.37	$0.64 \pm 0.28*$	$0.33 \pm 0.32*$	0.77 ± 0.30	
	Cyp1b1	1.36 ± 0.51	$0.64 \pm 0.28*$	$0.47 \pm 0.21*$	$3.52 \pm 1.42^{\#}$	
	Nqo1	0.90 ± 0.09	1.18 ± 0.35	1.22 ± 0.36	$2.36 \pm 0.31^{\#}$	
Phase II	Gsta1	0.94 ± 0.46	1.20 ± 0.40	$2.06 \pm 1.11^{\#}$	$6.30 \pm 2.61^{\#}$	
	Ugt1a6	$0.59 \pm 0.03*$	$2.85 \pm 0.81^{\#}$	$2.19 \pm 0.01^{\#}$	$5.14 \pm 2.47^{\#}$	
*P<0.05; #	P<0.001.			~		

press

Supplementary Table 4. Fold-change values of redox-related, phase I and phase II gene transcripts relative to CTR samples (set at 1) of 3T3 cell line exposed to 0.6 mM cypermethrin for 8, 24, 48 or 72 h.

		Hours				
Groups	Genes	8	24	48	72	
	Catalase	0.78 ± 0.29	$1.19 \pm 0.02*$	1.08 ± 0.12	$2.03 \pm 0.51^{\#}$	
Redox.	Sod1	0.94 ± 0.08	0.92 ± 0.08	0.89 ± 0.32	0.94 ± 0.44	
related	Sod2	0.72 ± 0.16	$0.83 \pm 0.04*$	$0.72 \pm 0.02*$	1.26 ± 0.39	
itiattu	Gpx1	0.93 ± 0.01	$0.63 \pm 0.03*$	0.76 ± 0.09	0.99 ± 0.14	
	Gpx4	0.81 ± 0.07	1.01 ± 0.05	0.86 ± 0.31	$1.32 \pm 0.12*$	
Phase I	Cyp1a1	0.91 ± 0.07	$1.51 \pm 0.25*$	1.00 ± 0.01	1.00 ± 0.11	
1 11450 1	Cyp1b1	1.00 ± 0.23	0.92 ± 0.07	0.85 ± 0.43	1.15 ± 0.70	
	Nqo1	0.97 ± 0.04	0.98 ± 0.04	1.17 ± 0.22	1.14 ± 0.04	
Phase II	Gsta1	0.76 ± 0.10	1.14 ± 0.11	$3.80 \pm 0.04^{\#}$	$2.43 \pm 0.42^{\#}$	
	Ugt1a6	1.22 ± 0.21	$2.32 \pm 0.22^{\#}$	$4.43 \pm 1.23^{\#}$	$3.56 \pm 1.63^{\#}$	

Supplementary Table 5. Fold-change values of pluripotency gene transcripts of R1 ESCs exposed to 0.3 mM cypermethrin for 12, 24, 48 or 72 h relative to control ESCs (set at 1).

		Hours			
Group	Genes	12	24	48	72
Pluripotency	Oct-4	$0.71 \pm 0.15*$	$0.75 \pm 0.11*$	$1.29 \pm 0.34*$	$1.48 \pm 0.20*$
	Nanog	$0.71 \pm 0.11*$	$0.85 \pm 0.06*$	$1.35 \pm 0.22*$	$1.74 \pm 0.55*$

*P<0.001.

Supplementary Table 6. Fold-change values of early ectoderm, mesoderm and endoderm gene transcripts of EBs differentiated for 5 days from R1 ESCs exposed to 0.3 mM cypermethrin for 12, 24, 48 or 72 h relative to EBs differentiated from control (not exposed) ESCs (set at 1).

		Hours			
Group	Genes	12	24	48	72
Early germ layers	Fgf5	1.00 ± 0.72	$0.06 \pm 0.01*$	$0.39 \pm 0.08*$	0.64 ± 0.34
	Brachyury	$0.16 \pm 0.05*$	$1.11 \pm 0.04*$	$1.21 \pm 0.26*$	$0.64 \pm 0.06*$
	Foxa2	$7.28 \pm 3.85*$	1.82 ± 1.19	$7.19 \pm 2.69*$	$3.42 \pm 0.12*$

*P<0.001.

Supplementary Figure 1.

Dose/response curve to CYP of R1 and 3T3 after 72 h exposure. Data represent the mean \pm SD of 3 independent experiments.

