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Immunohistochemistry as a paramount tool in research of normal urothelium, 
bladder cancer and bladder pain syndrome
Daša Zupančič, Rok Romih

Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Slovenia

The urothelium, an epithelium of the urinary bladder, primarily functions as blood-urine permeability barrier.
The urothelium has a very slow turnover under normal conditions but is capable of extremely fast response to
injury. During regeneration urothelium either restores normal function or undergoes altered differentiation path-
ways, the latter being the cause of several bladder diseases. In this review, we describe the structure of the api-
cal plasma membrane that enables barrier function, the role of urothelium specific proteins uroplakins and the
machinery for polarized membrane transports in terminally differentiated superficial umbrella cells. We address
key markers, such as keratins, cancer stem cell markers, retinoic acid signalling pathway proteins and transient
receptor potential channels and purinergic receptors that drive normal and altered differentiation in bladder can-
cer and bladder pain syndrome. Finally, we discuss uncertainties regarding research, diagnosis and treatment of
bladder pain syndrome. Throughout the review, we emphasise the contribution of immunohistochemistry in
advancing our understanding of processes in normal and diseased bladder as well as the most promising possi-
bilities for improved bladder cancer and bladder pain syndrome management.

Key words: Urothelium; bladder cancer; bladder pain syndrome; uroplakins; keratins; retinoic acid; transient
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Introduction
The urothelium is a stratified epithelium of the lower urinary

tract covering the renal pelvis, ureters, urinary bladder and proxi-
mal urethra.1 Bladder urothelium is composed of three distinctive
cell layers, i.e. poorly differentiated basal cells, partially differen-
tiated intermediate cells, and terminally differentiated superficial
umbrella cells. The urothelium plus basal lamina and lamina pro-
pria form the mucosal layer of the bladder wall.2,3 The other two
layers are the muscularis propria (detrusor) and the
adventitia/serosa. 

Functionally, normal urothelium forms a blood-urine perme-
ability barrier against toxic metabolites and pathogenic bacteria in
the urine. Transepithelial resistance of the urothelium is 10,000 –
75,000 Ωcm2, which is extremely high and puts urothelium among
the tightest barriers in mammalian body.4 The barrier must be
maintained during micturition cycles, particularly when bladder is
stretched by filling with urine.2 This requirement is accomplished
mainly by terminal differentiation of umbrella cells. 

The ability of the bladder to perform its function of urine stor-
age and voiding depends on the central nervous system receiving
accurate information on the state of the bladder fullness, which
was first described in 1933 by Denny-Brown and Robertson.5
Recent evidence suggests that sensory proteins like transient
receptor potential (TRP) channels and purinergic P2X receptors in
the urothelium are activated by binding of ATP or upon distension,
respectively.6,7 This leads to release of signaling molecules such as
ATP, NO and acetylcholine from urothelium and their action on
interstitial cells, afferent fibres and smooth muscle cells in the
bladder wall.8,9 Therefore urothelium acts as a part of bladder sen-
sory web, which coordinates the micturition cycle.10

The permeability barrier and sensory function of the urotheli-
um are often compromised in bladder diseases like bladder cancer
(BC) and bladder pain syndrome (BPS). Immunohistochemistry
(IHC) provided crucial contribution to our comprehension of
urothelial structure and function in health and disease. Data were
obtained by IHC based on peroxidase reaction (IHC-Px), but the
most informative were immunofluorescence (IF) and immunoelec-
tron microscopy (IEM).

Immunohistochemistry reveals the mysteries of
normal urothelial differentiation

Seminal transmission electron microscopy analyses done by
Marian R. Hicks in the sixties revealed thickened plasma mem-
brane of the bladder’s luminal surface and of angular cytoplasmic
vesicles, which suggested that these membrane are unusually
rigid.11 Leopold G. Koss named this membrane asymmetric unit
membrane (AUM).3 It was confirmed that AUM forms apical plas-
ma membrane and fusiform vesicles (FVs) of the umbrella cells.2,12

The designation ‘urothelial plaques’ was coined to describe rigid
AUM structure.13 Urothelial plaques cover up to 90 % of the apical
surface and they are separated by narrow hinge regions of unthick-
ened symmetric membrane.14 Another evidence for this organisa-
tion came from scanning electron microscopy and atomic force
microscopy, which showed that plaques are surrounded by micror-
idges, which correspond to hinge regions.15-18 Isolation, freeze
fracturing and quick-freeze/deep-etch demonstrated that urothelial
plaques (diameter 0.2-0.5 µm) contain hexagonally arranged 16-
nm intramembrane particles.19-21 Cryo-electron microscopy provid-
ed evidence that these particles create structural basis for urothelial
permeability barrier.22

Ground-breaking understanding of molecular structure of
intramembrane particles came in the beginning of nineties with the
discovery of 4 transmembrane proteins, uroplakins (UPs) Ia, Ib, II
and IIIa by the group of Tung-Tien Sun.20,23-25 IHC-Px and IF con-
firmed their expression in umbrella cells and IEM showed their
association with urothelial plaques17-19 (Figure 1). A model of UPs
assembly into 16-nm particles26 suggests that UPs acquire high
mannose glycans and form two heterodimers (UPIa/UPII and
UPIb/UPIII) in the endoplasmic reticulum.27,28 These heterodimers
exit from the endoplasmic reticulum and they are transported to the
Golgi apparatus (GA).29,30 In the GA, specific glycosylation
occurs, which causes conformational changes, thus allowing het-
erotetramer (UPIa/UPII + UPIb/UPIII) formation.31 In the trans-
Golgi network (TGN), the prosequence of UPII is removed, trig-
gering the oligomerization of 6 heterotetramers into one urothelial
particle.26,32 IEM revealed polarised transport of UPs from the
TGN to the apical plasma membrane of the umbrella cell. A crucial
necessity for such polarised transport are tight junctions of the
umbrella cells.33 Combination of transmission electron
microscopy, IEM, IF, freez-fracture and electron tomography

Figure 1. Normal urothelium of the mouse urinary bladder. A) IHC-Px of uroplakins (UPs) is positive (brown) in the superficial
umbrella cells; B) IEM of UPs is positive in the membranes of fusiform vesicle, multivesicular bodies and in the apical plasma mem-
brane of umbrella cell; C) IF of keratin K20 is positive (green arrow) in the subapical region of umbrella cell. Labelling of the lamina
propria is unspecific. L, lumen; UC, umbrella cell; FV, fusiform vesicle; MVB, multivesicular body; LP, lamina propria; white line, loca-
tion of the apical plasma membrane. Scale bars: A) 50 µm; B) 500 nm; C) 20 µm.
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demonstrated the sequential steps of urothelial plaque formation in
post-Golgi compartments. First, small rounded uroplakin-positive
transporting vesicles detach from the TGN and subsequently fuse
into immature FVs with slightly dilated profiles. With additional
fusions and buddings, they mature into flattened FVs, which trans-
port urothelial plaques toward the apical surface of the umbrella
cells.34,35 According to IF and IEM, FVs contain Rab8/11 and
Rab27b/Slac2-a, which mediate apical transport along actin fila-
ments by the action of myosin Va. FVs pass trajectorial network of
K20 to reach the subapical region of the umbrella cells (Figure
1).36 This is followed by membrane tethering and a final step of
SNARE mediated and MAL (myelin-and-lymphocyte protein)
facilitated membrane fusion with the apical plasma membrane.37,38

To sum up, uroplakins and K20 are two major markers, which
have to be analyzed by IHC, IF and IEM to assess differentiation
stage of urothelial cells. Therefore, the detection of their expres-
sion and localisation is crucial to discriminate between normal and
pathologically altered urothelium.

How immunohistochemistry contributes to under-
standing the bladder cancer

The majority of BC are urothelial carcinomas. More than a half
of them are papillomas or the papillary carcinomas (pTa, pT1),
which have a relatively good prognosis.39 Squamous cell carcino-
mas have variable survival outcomes, while carcinoma in situ
(CIS) can progress to muscle-invasive urothelial carcinoma (pT2)
with poor prognosis.40 The most challenging feature of BC is its
high recurrence rate, which is between 50% and 90% of cases.41

Somehow surprising is the finding that immunohistochemical
labelling of UPs does not correlate with BC stage and grade.42,43

However, IEM showed that despite the expression of UPs is preserved
their subcellular localization is changed in urothelial cancer

cells. In contrast to normal superficial cells, they appear also in the
basolateral plasma membrane, which points to altered regulation of
membrane transports (Figure 2).44,45

Accepted diagnostic and prognostic markers for BC are
changes of keratin expression profiles. For comparison, IF demon-
strated the expression of K7, K8, K18 and K19 in all cell layers,

small quantity of K5 in basal cells, K13 in basal and some interme-
diate cells and K20 only in umbrella cells in the normal urotheli-
um.46-48 Normal K20 expression pattern is correlated with non-
recurrent tumours and it can therefore be used for objective differ-
ential diagnosis between papillomas and carcinomas.49 Increased
expression of K20 in all urothelial cell layers is distinctive feature
of CIS,50 while intense IHC-Px staining of K8 and K18 might point
to invasive cancer.49 Furthermore, the loss of K13 is associated
with high cancer grade and stage, while de novo expression of K14
may indicate squamous differentiation of urothelial cells and an
unfavourable outcome for patients.49

It turned out that keratin immunolabelling is important for the
studies of BC progression and recurrence, which both rely on can-
cer stem cells (CSCs). Their identification and immunolocalization
remain elusive, mainly because it is not clear weather cancer 
originate form one or more subpopulations of CSCs. A subset of
K5, K14 and sonic hedgehog positive basal cells were proposed to
be the urothelial CSCs.51 Furthermore, Lin et al. suggested that
K5-positive, K7-negative basal cells with constitutive expression
of β-catenin were the possible CSCs.52 In accordance with these
results, Shin et al. discovered that K5-positive basal cells,  which
also express sonic hedgehog, were necessary for CIS and invasive
carcinoma development.53 The origin of urothelial carcinomas was
challenged by lineage tracing studies, which showed that papillary
carcinoma arises from intermediate cells, while CIS and muscle-
invasive carcinoma arise through the transformation of K5-nega-
tive basal cells.51

Several pieces of evidence show that the retinoic acid (RA)
signalling pathway is often compromised in carcinomas.54,55 For
example, due to low intake of vitamin A (a generic term referring
to a group of retinoids, such as retinol, retinal and RA), normal
urothelium is replaced by urothelial squamous metaplasia, a pre-
cancerous stage, which may progress to squamous carcinoma.5
Additionally, several epidemiological studies and meta-analyses
show that high vitamin A intake and high vitamin A serum levels
are associated with lower risk of BC in humans.57-59 In an animal
model of early bladder carcinogenesis, we demonstrated that vita-
min A-rich diet altered RA signalling and decreased atypia and
apoptosis of urothelial cells.60 Moreover, IF revealed that during
early bladder carcinogenesis, lecithin retinol acyltransferase
(LRAT), which transforms retinol to inactive retinyl esters, is
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Figure 2. Animal model of bladder carcinogenesis induced by N-Butyl-N-(4-hydroxybutyl)nitrosamine (BBN). A) IF of uroplakins
(UPs) is positive (green arrow) or negative (black arrow) in the apical plasma membrane of superficial urothelial cells after 10 weeks of
BBN treatment; B) IEM of UPs is positive (arrows) in the membranes of immature fusiform vesicle (iFV) and in the apical plasma mem-
brane of superficial urothelial cell after 5 weeks of BBN treatment; C) IF of lecithin retinol acyltransferase (LRAT) is positive (green)
in the urothelium after 2 weeks of BBN treatment; LRAT is present in the cytoplasm of the urothelial cells and also in their nuclei
(green arrow). L, lumen; UPs, uroplakins; iFV, immature fusiform vesicle; LP, lamina propria; white line, approximate location of basal
lamina. Scale bars: A,C) 50 µm; B) 1 µm.
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translocated from cytoplasm of urothelial cells into their nuclei
(Figure 2).60 We assume that LRAT exerts its tumour-suppressing
role in the nuclei of urothelial cells.61 This notion is supported by
the study of Boorjian et al., which showed by IHC-Px that LRAT
is inversely correlated to tumour stage in BC.62 Although various
findings from in vivo and in vitro models of BC demonstrate a
potential for the use of synthetic and natural retinoids for BC pre-
vention and treatment, the successful clinical trials are needed
before they can be used in clinical settings.

Bladder pain syndrome remains a major challenge
for immunohistochemistry

The urothelial-associated sensory web is affected in BPS. BPS
belong to a group of bladder diseases under the term interstitial
cystitis/bladder pain syndrome (IC/BPS).63,64 Main presenting
symptoms of BPS are frequency, urgency, nocturia, and bladder
pain, which often increases as the bladder fills. Despite unknown
etiology, difficult diagnosis and lack of effective treatment
(https://uroweb.org/, https://www.auanet.org/), aberrant urothelial
cell differentiation, together with accompanying changes in senso-
ry protein expressions are unifying hallmarks of BPS that are stud-

ied by IHC. BPS is associated with incomplete urothelial differen-
tiation as demonstrated by IEM that showed lower expression of
UPs and absence of urothelial plaques in the apical plasma mem-
brane.65-67 This may lead to a leaky barrier followed by enhanced
signalling from the urothelium.65 TRP channels and P2X receptors
are among the candidates to play a role in BPS since they are dys-
regulated during various micturition-related disorders.68 TRP chan-
nels are nonspecific cation channels that are permeable to Ca2+ and
might act as sensors of stretch and/or chemical irritation. The TRP
channel superfamily consists of subfamilies TRPA (ankyrin),
TRPC (canonical), TRPM (melastatin), TRPML (mucolipin),
TRPN (no mechanopotential), TRPP (polycystin) and TRPV
(vanilloid).69 P2X receptors are membrane ion channels preferably
permeable to sodium, potassium and calcium. Various homo- and
hetero-trimers of P2X1-P2X7 subunits associate to form a func-
tional ion channels that open upon binding of extracellular ATP.
Almost all subtypes of TRPV channels and P2X receptors were
shown in the bladder wall by various methods, but we consider
here only those that were immunohistochemically demonstrated in
the urothelium. 

Several members of TRP superfamily (e.g. TRPV1, TRPV4,
TRPV2, TRPM4, TRPM7, TRPM8, TRPA1, TRPC1 and TRPC4)
were shown in normal urothelium by IHC.70 The majority of stud-

Figure 3. Our preliminary IF results on normal human urothelium of the urinary bladder. A) IF of TRPV2 is positive (green) in the
superficial layers of the urothelium and in some areas of the lamina propria; B) IF of TRPM7 is positive (green) in the superficial layers
of the urothelium; C) IF of P2X2 is weakly positive (green) in the superficial urothelial cells; D) IF of P2X7 is positive (green) in the
superficial layers of the urothelium. L, lumen; LP, lamina propria; white line, approximate location of basal lamina. Scale bars: 100 µm.
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ies focus on TRPV1 and TRPV4. TRPV1 is essential for pain sen-
sation associated with BPS, while TRPV4 is the main urothelial
mechanosensor, which is activated by bladder distension.71 There
is still a controversy about TRPV1 expression in urothelium, since
variable labelling results were reported by different groups.72-76 For
example, a weak anti-TRPV1 labelling in superficial urothelial
layer by IF.74 However, a similar staining pattern was observed in
the urothelium of wild-type and TRPV1 knockout mice, which
shows that currently used anti-TRPV1 antibodies can cause an
unspecific labelling.77 Several studies showed altered expression of
TRPV1 in patients with BPS as well as in animal models, but until
now only one study demonstrated this by IF.74,75,78,79 On the other
hand, there is more consistency about TRPV4 localization in the
normal urothelium, particularly in the basal cell layer.76,80,81 IEM
further showed that TRPV4 is localized near the basal plasma
membranes adjacent to the basal lamina.73 Although some studies
reported on important role of TRPV4 in BPS,82,83 no IHC confirma-
tion is available, yet. Regarding other members of TRP family, IF
studies showed that TRPV2 and TRPM4 were prominently local-
ized to the umbrella cell apical plasma membrane, TRPC4 and
TRPV4 on their abluminal surfaces, while TRPC1, TRPM7, and
TRPML1 in their cytoplasm (Figure 3).73,76,80,84 To the best of our
knowledge, the studies of their possible contributions to BPS were
not performed. 

All of seven P2X receptors subtypes were expressed through-
out the urothelium as suggested by an IF study on feline bladders.85

In comparison, clear P2X7, less distinct P2X2 and weaker P2X3
labelling was observed in the normal human urothelium (Figure
3).86 In the mouse urothelium, IF revealed that P2X7 receptor is
confined to the superficial urothelial cells.87 Additionally, in the rat
urothelium, P2X7 and P2X4 are expressed both intracellularly and
on the apical surface.88 The most studied member of P2X family is
P2X3, yet again, the IF results are inconsistent about its urothelial
expression, since studies report positive, weak or negative
labelling.85-87,89-92 While there was a marked reduction in P2X1
receptor staining observed in feline interstitial cystitis,85 studies on
human biopsy samples from patients with BPS revealed that the
expression of P2X2 and P2X3 is increased in the urothelium.93,94

Moreover, P2X3 expression is abnormally upregulated in response
to stretch in urothelial cells isolated from patients with BPS.95,96

Since TRPV1 and P2X3 represent the most important thera-
peutic targets for BPS, their adequate immunolocalization is of
huge importance. Unfortunately, as mentioned above, IHC is still
generating confusing results about the presence and distribution of
TRP channels and P2X receptors in the urothelium. The reasons
for that are diverse, but they probably include low expression lev-
els of these proteins, poor specificity of antibodies, lack of ade-
quate controls and the fact that the urothelium is particularly sus-
ceptible to nonspecific adsorption of antibodies.97 Moreover, other
experimental approaches (e.g., immunoblotting, RT-PCR, in situ
hybridization, fluorescently activated cell sorting, functional and
pharmacological assays) introduced additional controversies
regarding the expression of these and other sensory and signalling
proteins in the urothelium.97

What more can immunohistochemistry do in the
field of urothelial biology?

Despite a vast amount of knowledge on urothelial biology
gained in the recent years, there are still many open questions.
Some of them, which are closely related to the discussions above,
emerged also from our work and they are briefly described here.

In contrast to well established pathway of apical plasma mem-
brane biosynthesis in umbrella cells, less understood remain the

function, mechanism and regulation of the endocytosis of UPs. It
is possible that in umbrella cells a small fraction of fusiform vesi-
cles is formed by urothelial plaque internalization upon voiding.
Yet, we have shown that apical plasma membrane is internalized
mainly from hinge regions by small endocytic vesicles.98,99

Internalized UPs become integrated into the membranes of multi-
vesicular bodies (Figure 1B) to be later degraded in lysosomes.
Recently it was shown that sorting nexin Snx31 plays an active
role in the regulation of UPs degradation.100 It seems that increased
UPs synthesis, together with the rearrangement of actin filaments
and microtubules, hinder apical endocytosis.98,101 Moreover,
Khandelwal et al. showed that apical endocytosis occurs via non-
clathrin pathway that requires RhoA and dynamin 2.102

We have gained some insights into altered RA signalling dur-
ing early bladder carcinogenesis (Figure 2C), but there are no data
about RA signalling in developed urothelial carcinomas.60 We have
discussed the role of P2Xs and TRPs, particularly in BPS patients,
where we have seen that the IHC results are inconclusive or pre-
liminary (Figure 3). Other receptors and channels involved in
urothelial signalling have been reported,9 including adrenorecep-
tors, muscarinic and nicotinic receptors.103 However, with all of
them there is the same problem of conflicting IHC results. The
problem of inconclusive localization results can be resolved in two
ways. First, by the production of more specific antibodies against
these proteins, which will be suitable also for IEM. Second, by
applying new or improved techniques, such as cryosections
according to the Tokuyasu, freeze-fracture replica immunola-
belling, combined lectin- and immuno-histochemistry and correla-
tive light and electron microscopy.104-108

We believe that IHC will remain indispensable for bladder
research in the future, not only for resolving basic biological ques-
tions, but also for helping find and implement new diagnostic and
treatment strategies for BC, BPS and other bladder disorders. 
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