
                               European Journal of Histochemistry 2021; volume 65(s1):3285

Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration:
Morphological and molecular study
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Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it
is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation
and currently available treatments show limited efficacy. It is now established that neurons are not the only cell
type involved in chronic pain and that glial cells, mainly microglia and astrocytes, are implicated in the initia-
tion and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxali-
platin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magne-
sium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation
induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by means of molecular and mor-
phological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn salts are able to
prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum
stress.
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Introduction
The incidence of tumour burden, nowadays, is still growing

especially in the developing countries, mainly due to population
growth and ageing, as previously predicted.1 However, thanks to
the scientific and technological advances, prevention and thera-
peutic efforts are able to decrease this deleterious pathology, at
least in order to improve the quality of life of patients. Among the
different cancer types, colorectal cancer is listed as third and sec-
ond, respectively for incidence and mortality, in both genders
worldwide.2 Oxaliplatin is the most widely used drugs to counter-
act colorectal cancer progression,3 a third-generation platinum-
derived chemotherapy agent that has exceeded the cisplatin usage
in term of efficacy and cancer resistance.4

Despite oxaliplatin anti-cancer efficacy, its side effects, first of
all neuropathic pain, constitute a growing field of investigation. It
has been reported that oxaliplatin is able to induce glial activation
in the central nervous system (CNS), both in spinal cord and in dif-
ferent brain areas.5,6 Moreover, recent studies take into account that
plasmatic levels of the drug  can alter the blood-brain barrier,
directly affecting the CNS.7 In the past years, many efforts have
been made in order to mitigate the oxaliplatin-induced neuropathic
pain and  the properties of  microelements such as magnesium
(Mg), manganese (Mn) and zinc (Zn)  were investigated.8-10

In this study the protective properties of these three microele-
ments, against the oxaliplatin-dependent neurotoxic effects in a
microglial cell line, were evaluated. 

Materials and Methods

Cell lines and treatments
The murine microglia cell line (BV-2), purchased by Istituto

Zooprofilattico Sperimentale della Lombardia e dell’Emilia
Romagna (Brescia, Italy), was routinely cultured as previously
reported.11 During each treatment, the medium was replaced with
starvation medium (without FBS) with the appropriate stimuli.
Oxaliplatin, dissolved in distilled water, was used at 3 µM final
concentration. Magnesium chloride (MgCl2) 1 mM, manganese
chloride (MnCl2) 50 nM or zinc chloride (ZnCl2) 100 nM 1 mM
Magnesium chloride (MgCl2), or 50 nM manganese chloride
(MnCl2), or 100 nM zinc chloride (ZnCl2)  (Sigma Aldrich, Milan,
Italy), dissolved in distilled water, was added in the starvation
medium 24 h before and during oxaliplatin treatment, for a total of
48 h.

MTT assay
BV-2 cells were plated into 96 multiwells at the density of

5x103 cells/well, in growth medium. The following day, the cells
were treated with increasing concentration of oxaliplatin for 24 h
and a standard procedure for cell viability evaluation was per-
formed as previously reported.7

Western blotting analysis
The BV-2 cells were seeded at 4 x 106 density in Petri dishes

(∅ 100 mm) with complete growth medium. The following days,
the medium was replaced with starvation medium supplemented
with different treatments.

After stimulation, the cells were harvested following a previ-
ously used standard procedure for protein extraction, protein quan-
tification and Western blotting analysis.12 The specific primary
antibody anti-GRP78 (ThermoFischer Scientific, Milan, Italy) was
incubated overnight at 4°C.

Reactive oxygen species (ROS) production analysis
The BV-2 cells were seeded in 96 multiwells in complete

growth medium. The following days, the cells were treated in star-
vation medium and, after stimulation, the medium was removed
and the cells were loaded with 5 μM CM-H2DCFDA (Life
Technologies, ThermoFisher Scientific, Milan, Italy) as previously
reported.13

Immunofluorescence staining analysis
The microglial BV-2 cell line was seeded at 1.2 x 104 density

on coverslip properly lodge in 6 multiwells in their complete
growth medium. The following day, the medium was replaced with
starvation medium supplemented with appropriate stimuli. After
each treatment, the medium was discarded and a previously used
standard procedure was followed.12 The primary antibody (rabbit
anti-cytochrome C, rabbit anti-Iba1, rabbit anti-Nrf2, or mouse
anti-CD86; SantaCruz Biotechnology, Santa Cruz, CA, USA),
diluted 1:200 in blocking solution were used. The images were
acquired by a motorized 654 Leica DM6000 B microscope
equipped with a DFC350FX camera (Leica, Mannheim,
Germany). 

Statistical analysis
Statistical analysis was performed by one-way ANOVA fol-

lowed by the Tukey post-hoc test. All assessments were made by
researchers blinded to treatments. Data were analyzed using
“Origin 9” software (OriginLab, Northampton, MA, USA).
Differences were considered significant at p<0.05.

Results

MTT assay
The MTT assay (Figure 1), displayed that oxaliplatin induced

a decrease in cell viability in a dose-dependent manner.
Accordingly to previously reported data,14 we chose an oxaliplatin
concentration of 3 µM to carry out all the subsequent experiments. 

ROS production analysis
The treatment with oxaliplatin significantly increased the ROS

production in comparison to control cells (Figure 2A). On the con-
trary, the presence of Mg, Mn or Zn, counteracted the effect of the
chemotherapy.

Figure 1. Cell viability assay. Oxaliplatin significantly decrease
the cell viability after 24 h treatment in a dose-dependent man-
ner. Values are expressed in percentage of control (untreated cells)
as mean ±SEM; *p<0.05 vs control. Each experiment was per-
formed in quintuplicate, for three times.
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Cytochrome C analysis
Since oxaliplatin induces the release of mitochondrial

cytochrome C in astrocytes,15 we evaluated the cytoplasmic local-
ization of this protein in BV-2 cells. The presence of oxaliplatin
induces an increase in the cytoplasmic localization of the
cytochrome C (black column), whereas the presence of Mg, Mn, or
Zn was able to counteract this effect (grey columns) (Figure 2B).

Nrf2 nuclear translocation
Figure 2C shows that the treatment with microelements was

able to prevent the Nrf2 nuclear translocation induced by the pres-
ence of oxaliplatin. 

Endoplasmic reticulum (ER) stress 
Oxaliplatin 3 µM was able to significantly increase the ER

stress marker GRP78 (Figure 2D). Interestingly, only Mg treat-

[page 87]

Figure 2. Oxaliplatin-induced subcellular impairment and its protective effects of micronutrients. A) The ROS were evaluated in order
to highlight the role of oxaliplatin to induce oxidative stress; microglial BV-2 cells increased the ROS production during oxaliplatin
treatment; such an increase in ROS overproduction was counteracted by the presence of micronutrients in the cell medium; values are
expressed in percentage of control (Ctrl, untreated cells) as mean ±SEM; “*p<0.05 vs Ctrl; #p<0.05 vs oxaliplatin. Each experiment was
performed in triplicate, for three different experimental setups. B) Immunofluorescent analysis of cytochrome C shown a significant
cytoplasmic increase after 24 h of 3 μM oxaliplatin treatment (oxaliplatin); on the other hand, pre- and co-treatment of Mg 1 mM, Mn
50 nM and Zn 100 nM 1 mM Mg, 50 nM Mn and 100 nM Zn (grey columns and last three images on the right) were able to prevent
this incremen. Five microscopic fields for each experimental point were analyzed, and three different experiments were performed; blue,
DAPI; green, Cytochrome C. Total magnification 200x; scale bar: 50 µm. Values are expressed in percentage of control (Ctrl, untreated
cells) as mean ±SEM; *p<0.05 vs Ctrl; #p<0.05 vs oxaliplatin. C) The Nrf2 analysis revealed a consistent nuclear translocation when
BV-2 cells were treated with 3 μM oxaliplatin alone for 24 h; on the contrary, when Mg, Mn and Zn were added in the medium, they
counteract the translocation of the Nrf2 transcription factor which showed mainly a cytoplasmic localization. Five microscopic fields
for each experimental point were analyzed, and three different experiments were performed; red, DAPI; green, Nrf2. Total magnification
200x; scale bar: 50 µm. Values are expressed in percentage of control (Ctrl, untreated cells) as mean ±SEM; *p<0.05 vs Ctrl; #p<0.05 vs
oxaliplatin. D) Western blotting analysis and quantification of GRP78 expression during oxaliplatin 3 µM treatment at 24 h alone
(black column) and in presence of 1 mM Mg  (light grey column), 50 nM Mn  (medium grey column) or 100 nM Zn  (dark grey col-
umn), both in pre-treatment and co-treatment; values are expressed in percentage of control (Ctrl, untreated cells) as mean ±SEM;
*p<0.05 vs Ctrl; #p<0.05 vs oxaliplatin. Each experiment was performed in triplicate, for three different experimental setups.

[European Journal of Histochemistry 2021; 65(s1):3285]

2021_s 1 Article.qxp_Hrev_master  10/11/21  15:58  Pagina 87

Non
-co

mmerc
ial

 us
e o

nly



                             Article

ment was able to prevent this effect (Figure 2D, light grey col-
umn), whereas Mn and Zn showed no preventive effect for GRP78
increase (Figure 2D, medium and dark grey columns, respective-
ly).

Microglial markers expression
In order to achieve if oxaliplatin was able to induce the activa-

tion of BV-2 cells, we evaluated the Iba1 and CD86 expression by
immunofluorescent analysis. Oxaliplatin treatment was able to sig-
nificantly increase both the Iba1 and CD86 expression levels
(Figure 3, black column and second image from left). This effect
was counteracted by the presence of Mg, Mn or Zn (grey columns
and last three images on the right).

Discussion and Conclusions
Despite its efficacy in counteracting cancer development,

oxaliplatin is associated to the onset of neuropathic pain as its neg-
ative interaction with glial cells has been widely demonstrated in
vivo. Although the activation of microglia during oxaliplatin-
induced neuropathic pain is still much debated,15 many studies
showed that both microglia and astrocytes are activated in the early
phase of oxaliplatin treatment.5,6,16-18

Recent studies have shown that the main cause of the onset of
neuropathy is an oxaliplatin-dependent production of ROS.19 Since
activated microglia is a major sources of ROS,20 we tried to delin-
eate, albeit partially, the signaling pathway that is triggered in
microglial cells treated with oxaliplatin. The oxaliplatin concentra-
tion was chosen to be comparable to that administered to patients
undergoing chemotherapy and suffering from chronic neuropa-
thy.14 The concentration of Mg, Mn and Zn were used as previous-
ly reported.21-23

Our results clearly demonstrate that oxaliplatin induced a ROS
and cytoplasmic cytochrome C significant increase paralleled by a
significant increase in GRP78 expression levels in BV-2 cell line.
It has been demonstrated that the ER stress is linked to oxidative
stress and inflammatory signalling pathway,24 thus leading to glial
activation.25 Indeed, as shown by immunofluorescence analysis,
oxaliplatin increased the number of microglia activated cells,
showing an upregulation of Iba1, an activation marker,26 and
CD86, a pro-inflammatory marker.27 This microglia polarization
towards an inflammatory phenotype is further corroborated by the
increase in the nuclear localization of Nrf2, a transcriptional factor
that induces the transcription of many antioxidant genes, protect-
ing cells from inflammation.28

All these side effects promoted by oxaliplatin were counteract-
ed by the presence of Mg, Mn or Zn elements, known to play a role
in the cellular antioxidant defences.

Interestingly, the oxaliplatin-dependent ER stress was only
prevented by Mg treatment. This data is in agreement with those of
other authors demonstrating that a Mg deficiency suppress the
Nrf2 nuclear translocation, thus decreasing antioxidant enzyme
activity.29,30

In conclusion, our findings demonstrate in vitro microglial
activation after oxaliplatin treatment and elucidate some of the
molecular mechanisms involved in this signaling pathway. Even if
further investigations are needed to better delineate this molecular
pathway and although the efficacy of microelements in the treat-
ment of neuropathy is still debated, the present data demonstrate
that these metals are effective in preventing microglial oxidative
stress that in turn induces neurotoxicity.
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