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Histochemistry for nanomedicine: Novelty in tradition
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During the last two centuries, histochemistry has provided significant advancements in many fields of life sci-
ences. After a period of neglect due to the great development of biomolecular techniques, the histochemical
approach has been reappraised and is now widely applied in the field of nanomedicine. In fact, the novel
nanoconstructs intended for biomedical purposes must be visualized to test their interaction with tissue and cell
components. To this aim, several long-established staining methods have been re-discovered and re-interpreted
in an unconventional way for unequivocal identification of nanoparticulates at both light and transmission elec-
tron microscopy.
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Introduction

Since the pioneer book by Francois-Vincent Raspail in 1830,!
histochemistry has been developing for about two centuries, play-
ing a primary role in biological and medical research. By revealing
in situ the molecular organization of cell and tissue, histochemistry
has indeed provided significant advancements in the knowledge in
many fields of life sciences.>?

At the end of the last century, in parallel with the great devel-
opment of biomolecular techniques, histochemistry has become
progressively neglected, being perceived by non-histochemists as
a merely descriptive and old-fashioned approach (the term histo-
chemistry being “commonly perceived as an archaic term primari-
ly associated with stains and staining techniques”, in Raimond
Coleman’s words).* However, fashions change and, during the last
decade, histochemical techniques have been reappraised. In fact,
the knowledge of the chemical composition and molecular interac-
tions of chemical species in a biological system must be supported
by the information on the location and dynamics of specific mole-
cules in cells and tissues. Histochemistry is nowadays more and
more oriented toward the detection of single molecules in the very
place where their structural and functional roles are exerted.’

It is worth noting that histochemical stainings and techniques
that were introduced in the first years of the 20" century or even
before are still routinely used as irreplaceable tools to detect differ-
ent substances in situ.® The Perls’ Prussian blue method was intro-
duced in 18677 and still is the method of choice for visualizing
iron; classical histochemical techniques to demonstrate the pres-
ence of lipids® or polysaccharides® are still popular; Von Kossa’s
method!? to demonstrate the presence of calcium deposits in tis-
sues was developed in 1901 and is presently employed to study the
process of mineralization. Remarkably, its long-term impact on life
sciences and medicine still places histochemistry at the research
forefront in these disciplines.

As a matter of fact, classical histochemical methods have
recently been applied in the relatively new and fast-developing
field of nanomedicine where the novel nanoconstructs for biomed-
ical purposes must be visualized to test their interaction with vari-
ous biological systems (from cells in culture, to explanted tissues,
to living animals!!-15).

In the attempt to identify the nanoparticulates inside organs,
tissues and cells, researchers re-discovered and re-interpreted in an
innovative way several long-established staining methods for
unambiguous identification of their molecular constituents at both
light microscopy and transmission electron microscopy (TEM).

Histochemistry for nanomedical research

The most common method to make visible a nanoconstruct at
light microscopy consists in loading/linking a fluorescent dye dur-
ing the synthetic process. Fluorescently labelled nanoparticles may
be visualized at both bright-field microscopy and TEM by apply-
ing the procedure of diaminobenzidine (DAB) photooxidation.
This histochemical method was proposed by Maranto in 19826 to
convert the fluorochrome signal into a stable reaction product vis-
ible at bright-field microscopy as a brownish pigment and at TEM
as an electron dense granular precipitate. DAB photooxidation
proved to be suitable for different types of nanoparticles conjugat-
ed with different fluorophores, allowing their detection in the intra-
cellular milieu even after long time from their uptake.'”?!

Fluorochrome labelling of nanoconstructs cannot sometimes
be used due to technical or experimental reasons: e.g., the rapid
loss of the loaded fluorophore in the biological environment may
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make the nanoparticles undetectable; or fluorophore addition may
alter the original physicochemical properties; or high tissue auto-
fluorescence is incompatible with fluorochrome labelling of the
nanoparticles. In all these cases, histochemical staining techniques
may provide suitable detecting solutions.

Iron-, gold- or, more generally, metal-based nanoconstructs are
casily observed at TEM, due to their intrinsic electron density that
makes them unequivocally recognizable in the biological environ-
ment (for a recent review see’?). However, these nanoparticles
have no intrinsic feature that may make them visible at light
microscopy.

Prussian blue staining has frequently been used to visualize at
bright field microscopy iron-based nanoparticles inside cultured
cells or tissue slices.?32® After treatment with an acidic solution of
potassium ferricyanide, iron in the ferric state gives rise to a bright
blue pigment called ‘Prussian blue” (ferric ferrocyanide). The blue
pigment can be transformed into a brown-stained product by irra-
diation with ultraviolet light: this is an especially convenient pro-
cedure to improve the detection of low number of iron-based
nanoparticles.?’ Gold nanoconstructs may be seen at light
microscopy by applying the silver-enhancement technique: the
deposition of silver on the gold particles makes them grow in size
and become visible under a standard bright-field microscope.3*-3?

Organic nanoconstruct are especially difficult to detect espe-
cially at TEM, where they can hardly be discriminated from the
cell or tissue environment, due to their low intrinsic electron den-
sity.

The critical-electrolyte-concentration Alcian blue method was
originally proposed in 1975 by Schofield e al. to reveal gly-
cosaminoglycans in tissue sections,** and was recently repurposed,
in the frame of a nanomedical study, to label with high efficiency
and specificity hyaluronic acid-based nanoparticles® inside cul-
tured cells at both bright field microscopy (as a blue product) and
TEM (as fine electron dense precipitates).’® Alcian blue has also
been used to detect nanoscaled dendritic polyglycerol sulfate
amine in liver after in vivo injection thanks to the affinity of this
dye for the negatively charged sulfate groups.?’

Various histochemical methods have been proposed to label
lipid-based nanoparticles, depending on their chemical nature.
Osmium tetroxide is an efficient, long-established fixative for lipid
molecules thanks to its addition to the double carbon-carbon bonds
of unsaturated fatty acids®**° and can also be used as a “dye”: the
deposition of metallic osmium in the lipid-containing structures
results in an intense brownish or black color at bright-field
microscopy, and gives a marked electron density at TEM.
Consequently, lipid-based nanoparticles have frequently been
visualized by osmium tetroxide.?!*# Lipid nanoparticles have
also been made visible at light microscopy by staining with
PKH67: this is a fluorescent dye for specific and long-lasting
labelling of cell membrane thanks to its long aliphatic tails that
ensures stable incorporation into the lipid membrane regions.**
An interesting approach to allow visualization of liposomes in
three-dimensional optical microscopy has been set up by Syed et
al.*: to solve the problem of lipid denaturation in cleared tissues,
they developed cross-linkable tags that remain attached to the lipo-
some surface in living organs but, when the tissue undergoes fixa-
tion, they become cross linked into the tissue, thus revealing the
distribution of liposomes.

Rare-earth-based nanoparticles have been visualized at bright-
field microscopy in both cultured cells and tissue slices by means
of a chromogenic reaction with Chlorophosphonazo III, which
gives rise to a blue product independently of the rare earth type,
and can be quantitatively evaluated.’

Besides “classical” histochemical staining methods, immuno-
histochemistry too has been used to investigate nanoparticulates
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designed for biomedical applications. Immunogold labelling
allowed the intracellular localization at TEM of nanocarriers
loaded with digoxigening-containing DNA* as well as the
unequivocal detection of nanovesicles by targeting membrane
markers.*-! Chitosan nanoparticles were detected at both fluores-
cence microscopy and TEM by immunolabelling the loaded drug,
tracking also its release in the intracellular compartments.>?

Concluding remarks

The above examples are evidence that histochemistry is far
from being outdated but still has many responses to give, even in
cutting-edge research fields. In nanomedicine, histochemists will
find stimulating challenges to test their skill and creativity: estab-
lished staining techniques will surely find novel applications, and
the innovative materials used to manufacture the nanoconstructs
will encourage the development of original staining protocols.

Once again, histochemistry will prove to be alive and kicking.
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