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VEGF promotes diabetic retinopathy by upregulating the PKC/ET/NF-κB/ICAM-1
signaling pathway
Meiying Zhang, Min Zhou, Xia Cai, Yan Zhou, Xueling Jiang, Yan Luo, Yue Hu, Rong Qiu, Yanrong Wu, 
Yuejin Zhang, Yan Xiong
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Diabetic retinopathy (DR) is a common microvascular complication in patients with diabetes mellitus. DR is
caused by chronic hyperglycemia and characterized by progressive loss of vision because of damage to the retinal
microvasculature. In this study, we investigated the regulatory role and clinical significance of the vascular
endothelial growth factor (VEGF)/protein kinase C (PKC)/endothelin (ET)/nuclear factor-κB (NF-κB)/intercellu-
lar adhesion molecule 1 (ICAM-1) signaling pathway in DR using a rat model. Intraperitoneal injections of the
VEGF agonist, streptozotocin (STZ) were used to generate the DR model rats. DR rats treated with the VEGF
inhibitor (DR+VEGF inhibitor) were used to study the specific effects of VEGF on DR pathology and the under-
lying mechanisms. DR and DR+VEGF agonist rats were injected with the PKCβ2 inhibitor, GF109203X to deter-
mine the therapeutic potential of blocking the VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway. The body
weights and blood glucose levels of the rats in all groups were evaluated at 16 weeks. DR-related retinal
histopathology was analyzed by hematoxylin and eosin staining. ELISA assay was used to estimate the PKC activ-
ity in the retinal tissues. Western blotting and RT-qPCR assays were used to analyze the expression levels of PKC-
β2, VEGF, ETs, NF-κB, and ICAM-1 in the retinal tissues. Immunohistochemistry assay was was used to analyze
VEGF and ICAM-1 expression in the rat retinal tissues. Our results showed that VEGF, ICAM-1, PKCβ2, ET,
and NF-κB expression levels as well as PKC activity were significantly increased in the retinal tissues of the DR
and DR+VEGF agonist rat groups compared to the control and DR+VEGF inhibitor rat groups. DR and
DR+VEGF agonist rats showed significantly lower body weight and significantly higher retinal histopathology
scores and blood glucose levels compared to the control and DR+VEGF inhibitor group rats. However, treatment
of DR and DR+VEGF agonist rats with GF109203X partially alleviated DR pathology by inhibiting the
VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway. In summary, our data demonstrated that inhibition of the
VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway significantly alleviated DR-related pathology in the rat
model. Therefore, VEGF/PKC/ET/NF-κB/ICAM-1 signaling axis is a promising therapeutic target for DR. 
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Introduction
Diabetic retinopathy (DR) is a common diabetes-related

microvascular disease of the eye that causes progressive loss of
vision or blindness, and is characterized by retinal edema, exuda-
tion, hemorrhage, neovascularization, and changes in the prolifer-
ative membrane.1,2 In patients with DR, the chronic hyperglycemic
environment induces expression and secretion of pro-inflammato-
ry cytokines, which alter metabolic pathways and the blood-retinal
barrier function, inhibit endothelial cell proliferation, and stimulate
aberrant angiogenesis.3

DR is primarily treated with anti-platelet coagulation drugs,
fibrinolytic enzymes, and intravitreal injections of vascular
endothelial growth factor (VEGF) to suppress fundus edema and
neovascularization.4 Furthermore, some patients are surgically
treated by retinal laser photocoagulation to improve vision by
removing the surrounding neovascularization.5 However, the light
energy from the laser can also damage the outer layer of the retina
and the nerve fibers around the optic disc, thereby aggravating
visual field defects and visual impairment.6 Hence, there is an
urgent need to discover novel therapeutic targets for DR to
improve treatment outcomes. 

VEGF is a potent pro-angiogenic growth factor that is associ-
ated with the development of diabetes-related ophthalmopathy.7 In
the normal healthy eyes, low levels of VEGF are expressed and
secreted by the peripheral retinal cells, endothelial cells, and the
retinal pigment epithelial cells.8-10 In patients with DR, retinal
VEGF levels are significantly elevated and correlate with higher
IGF-1 levels and insulin resistance.11,12 However, specific molecu-
lar mechanisms regarding the regulation of DR progression by
VEGF remain obscure. 

VEGF and intercellular adhesion molecule 1 (ICAM-1) coor-
dinately regulate aberrant retinal angiogenesis in patients with
DR.13 VEGF induces expression of ICAM-1 in the retina and initi-
ates retinal leukocyte adhesion, which promotes early breakdown
of the blood-retina barrier, capillary non-perfusion, and endothelial
cell damage and death.14 Furthermore, ICAM-1 expression is
induced by the activation of the PKC/ET/NF-κB signaling path-
way.15-17 However, the specific role of the VEGF/PKC/ET/NF-
κB/ICAM-1 signaling axis in DR progression has not been
described. 

Therefore, in this study, we investigated the regulatory role of
the VEGF/PKC/ET/NF-κB/ICAM-1 signaling axis in the onset
and progression of DR using a rat model. 

Materials and Methods

Establishment of DR in vivo model
The animal experimental protocols were performed as

approved by the Animal Ethics committee of the Second Affiliated
Hospital of Nanchang University, Jiangxi, China. We purchased
healthy, distantly related, 1-month-old SPF-grade male SD rats
weighing 220±20 g from the Experimental Animal Center of the
Second Affiliated Hospital of Nanchang University. They were
housed in the SPF grade Experimental Animal Center under labo-
ratory conditions in accordance with the recommendations from
the Administration of Laboratory Animals of the State Science and
Technology Commission and the code of ethics for animals. The
rats were randomly divided into six experimental groups, namely,
NC, DR, DR + VEGF inhibitor, DR + VEGF agonist, DR +
GF109203X, and DR + VEGF agonist + GF109203X groups.

The SD rats were acclimatized for 5 days and were fed with

normal chow with free access to water. For the DR treatment, 10
g/L streptozotocin (STZ) was dissolved in 0.1 mol/L citrate buffer
(pH = 4.5) and injected intraperitoneally at a dose of 60 mg/kg.
The NC group and DR rats were administered intravitreal injec-
tions with 10 μL of 1% dimethyl sulfoxide, whereas the
GF109203X group was administered 10 μL of GF109203X at a
concentration of 10-5 mol/L in 1% DMSO.

Estimation of blood glucose levels in rats
The rats were fasted for 72 h and briefly anesthetized with

ether. The blood samples were collected from the caudal vein and
centrifuged at 3000 rpm for 10 min. The serum samples were
stored in a refrigerator at -20°C until further use. The blood glu-
cose levels were measured in the BK-500 automatic biochemical
analyzer (Biobase Biotech Ltd., Jinan city, China). The blood glu-
cose levels in diabetic rats were higher than 16.7 mmol/L.

Immunohistochemistry staining
The enucleated eyeballs of rats were harvested, fixed in 4%

paraformaldehyde, paraffin embedded, and sectioned into 4-µm-
thick slices. The fixed, paraffin-embedded sections were dewaxed
and hydrated by incubating the slices in xylene, followed by incu-
bation in different concentrations of solutions with serially diluted
concentrations of alcohol. The tissue slices were incubated in cit-
rate buffer with Triton X-100. Then, antigen retrieval was per-
formed by incubating the tissue sections in a 95°C water bath for
15 min followed by cooling to room temperature. Then, after rins-
ing and blocking at room temperature, the sections were incubated
overnight at 4°C with primary antibodies against VEGF (1:350;
Cat. No. ab1316, Abcam, Cambridge, UK) and ICAM-1 (1:600;
Cat. No. ab282575, Abcam,). The samples were then incubated for
40 min at 37°C with the HRP-conjugated rabbit anti-Rat IgG
(H&L) secondary antibody (1:500; Cat. No. ab6734 Abcam,).
Then, color development was performed with DAB. The sections
were counter-stained with hematoxylin and analyzed using the
Motic high-resolution color image measurement system. Brown
granular staining was considered as a positive signal.

Western blotting
The whole protein extracts of retinal tissues were prepared by

incubation with the RIPA lysis buffer (AS1004, ASPEN, Wuhan,
China). The total protein content of the samples was analyzed
using the BCA assay. Equal amounts of protein extracts were sep-
arated by SDS-PAGE and transferred onto PVDF membranes. The
membranes were blocked with 5% skimmed milk for 2 h at room
temperature. Then, the blots were incubated overnight at 4°C with
primary antibodies such as anti-VEGF (1:500; cat. no. ab69479,
Abcam), anti-ICAM-1 (1:600; Cat. No. ab282575, Abcam), anti-
PKCβ2 (1:1000; Cat. No. ab108970, Abcam), and anti-β-actin
(1:1000; Cat. No. ab8226, Abcam). The membranes were rinsed
and then incubated at room temperature for 2 h with the HRP-con-
jugated rabbit anti-mouse IgG H&L secondary antibody (1:2000;
Abcam, Cat. No. ab6728). The blots were developed using the
ECL reagent (AS1059, ASPEN). The grayscale values of the pro-
tein bands were analyzed by the Image-Pro Plus system. The rela-
tive expression of the proteins was analyzed using β-actin as the
internal reference control.

Hematoxylin and Eosin (H&E) staining
The retinal tissues of rats were fixed in 4% paraformaldehyde

solution for 24 h. The fixed retinal tissues were dehydrated in gra-
dient alcohol solutions, waxed, and paraffin embedded. Then, 
4-µm-thick retinal tissue sections were cut, dewaxed with xylene,
and hydrated with gradient alcohol solutions. The sections were
stained by first incubating with the hematoxylin solution for 10
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min followed by the eosin solution for 10 min. The stained sections
were dehydrated again with gradient alcohol, sealed with neutral
gum, and photographed under a light microscope.

RT-qPCR analysis
Retinal tissues were extracted from the enucleated eyeballs of

rats and frozen at -80°C. Total RNA was extracted from the retinal
tissue samples using the TRIpure Total RNA Extraction Reagent
(EP013, ELK Biotechnology Co. Ltd., Wuhan, China) and quanti-
fied by estimating the absorbance values (OD) at 260 nm and 280
nm. The quality of RNA samples was determined using the
OD260/OD280 ratio and samples with values between 1.8 and 2.0
were used for further analysis. The cDNA was synthesized from
the total RNA samples using the M-MLV Reverse Transcriptase
Reagent (EQ002, ELK Biotechnology). The cDNA samples were
used as a template and amplified using StepOne™ Real-Time PCR
System (Life Technologies, Carlsbad, CA, USA). The qPCR
cycling conditions included initial denaturation at 95°C for 3 min
followed by 45 cycles at 95°C for 10 s, 58°C for 45 s, and 72°C for
29 s. The relative gene expression were analyzed using the 2-ΔΔCT

method using β-actin as the internal reference. 

ELISA assay
The cytoplasmic and membrane protein samples were prepared

from the retinal tissues, which were isolated from the nuclei-free
eyeballs of rats. PKC Kinase activity was analyzed using the PKC
Kinase Activity Assay Kit (ab139437; Abcam) according to the
manufacturer’s instructions. The protein concentration of the sam-

ples and the absorbance (OD at 450 nm) values for the PKC kinase
activity were determined using the DR-200Bs microplate reader
(Diatek, Wuxi, China). PKC activity = OD/(protein content × reac-
tion time).

Statistical analysis
Statistical analysis was performed using the SPSS 19.0 soft-

ware (IBM Corp., Armonk, NY, USA). The data were expressed as
means ± standard deviation (SD). One-way ANOVA followed by
Tukey’s post-hoc test was used to compare the statistical differ-
ences between multiple experimental groups. P<0.05 was consid-
ered as statistically significant.

Results

VEGF inhibition improves body weight, decreased
histopathological characteristics of the retinal tissues
and normalizes blood glucose levels in the DR rats

The rats of DR group showed significantly lower body weight
and significantly higher blood glucose levels compared to the NC
group rats at 16 weeks (Figure 1 A,C). H&E staining results
demonstrated that the inner nuclear layer (INL), outer nuclear layer
(ONL), and the cell density in the ganglion cell layer of the retinal
tissues were significantly reduced in the DR group rats compared
to the NC group rats (Figure 1B). These results demonstrated suc-
cessful establishment of the DR model rats. 

Figure 1. Effects of the VEGF agonist and VEGF inhibitor on the DR pathology in rats. A) Body weights of the NC, DR, DR + VEGF
inhibitor, and DR + VEGF agonist group rats at 16 weeks. B) H&E staining results demonstrate the histopathological characteristics
of the retinal tissues from the NC, DR, DR + VEGF inhibitor, and DR + VEGF agonist group rats. C) Blood glucose levels in the NC,
DR, DR + VEGF inhibitor, and DR + VEGF agonist group rats at 16 weeks. *p<0.05; **p<0.01.
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After confirming the successful generation of the DR model
rats, the DR group rats were further divided into DR+VEGF
inhibitor and DR+VEGF agonist groups to determine the effects of
VEGF inhibition or VEGF overexpression on DR pathology. The
DR model rats treated with STZ (VEGF inhibitor) showed
increased body weight, lower blood glucose levels, and ameliora-
tion of the DR-related histopathological features in the retinal tis-
sues compared with the DR group rats (Figure 1 A-C). On the con-
trary, DR model rats treated with the VEGF agonist showed
reduced body weight, increased blood glucose levels, and further
exacerbation of the DR-related histopathological features in the
retinal tissues compared to the DR group rats (Figure 1 A-C). 

VEGF regulates ICAM-1 expression in the retinal 
tissues of the DR model rats

The retinal tissues of the DR group rats showed significantly
higher VEGF and ICAM-1 mRNA and protein levels compared to
the NC group rats (Figure 2 A-D). Furthermore, VEGF and ICAM-
1 expression levels in the retinal tissues were significantly reduced
in the DR + VEGF inhibitor group and significantly increased in
the DR + VEGF agonist group compared with the DR group
(Figure 2 A-D). This suggested that VEGF regulated ICAM-1
expression levels in the retinal tissues of the DR group rats.

VEGF regulates DR progression via the PKC/ET/NF-
κB/ICAM-1 signaling pathway

Next, we analyzed if VEGF regulated DR progression via the
PKC/ET/NF-κB signaling pathway. ELISA, Western blotting and
RT-qPCR assays showed that PKC activity and the expression lev-

els of PKCβ2, ET-1, ET-3, ET-A, ET-B, and NF-κB were signifi-
cantly higher in the retinal tissues of the DR group rats compared
to the NC group rats (Figure 3 A-H). Furthermore, PKC activity
and the PKCβ2, ET-1, ET-3, ET-A, ET-B, and NF-κB mRNA and
protein expression levels were significantly reduced in the retinal
tissues of the DR + VEGF inhibitor group rats and significantly
increased in the retinal tissues of the DR + VEGF agonist group
rats compared to the DR rats (Figure 3 A-H). These results sug-
gested that VEGF promoted DR by activating the PKC/ET/NF-
κB/ICAM-1 signaling pathway. 

PKCβ2 inhibitor reduces DR progression by suppress-
ing VEGF-induced activation of the PKC/ET/NF-
κB/ICAM-1 signaling pathway 

Next, we treated DR rats with GF109203X, a PKCβ2 inhibitor,
to confirm the regulatory role of the PKC signaling pathway in DR
pathology. The rats were divided into the DR, DR + VEGF agonist,
DR + GF109203X, and DR + VEGF agonist + GF109203X
groups. The body weights of rats were lowest in the DR + VEGF
agonist group and highest in the DR + GF109203X group after 16
weeks of treatment (Figure 4A). Furthermore, body weights of rats
in the DR + VEGF agonist + GF109203X group were higher than
the rats in the DR + VEGF agonist group (Figure 4A). Moreover,
in comparison with the DR group, blood glucose levels, PKC
activity, and the DR-related histopathological features were signif-
icantly decreased in the DR + GF109203X group and significantly
increased in the DR + VEGF agonist group (Figure 4 B-E).
Besides, VEGF agonist-related augmentation of the DR
histopathological features and blood glucose levels were partially

Figure 2. VEGF regulates ICAM-1 expression in the retinal tissues of the DR model rats. A) Immunochemistry results show the VEGF
and ICAM-1 protein expression levels in the retinal tissues of the NC, DR, DR + VEGF inhibitor, and DR + VEGF agonist group rats.
B) Western blot results show the VEGF and ICAM-1 protein levels in the retinal tissues of the NC, DR, DR + VEGF inhibitor, and DR
+ VEGF agonist group rats (C,D) RT-qPCR results show the VEGF and ICAM-1 mRNA levels in the retinal tissues of the NC, DR, DR
+ VEGF inhibitor, and DR + VEGF agonist group rats. **p<0.01 vs NC; ##p<0.01 vs DR.
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reduced in the DR+VEGF agonist+GF109203X group rats (Figure
4 B,C). PKC activity was significantly reduced in the retinal tis-
sues of the DR+VEGF agonist+GF109203X group rats compared
to the DR+VEGF agonist group (Figure 4 D,E). 

The expression levels of VEGF, ICAM-1, ETs, and NF-κB
were highest in the retinal tissues of the DR+VEGF agonist
group rats and lowest in the retinal tissues of the
DR+GF109203X group rats (Figures 5 and 6). Furthermore,

Figure 4. PKCβ2 inhibitor suppresses VEGF-induced PKC activity and related pathology in the retinal tissues of the DR rats. A) Bar
plot shows the body weight of the NC, DR, DR+VEGF agonist, DR+GF109203X, and DR+VEGF agonist+GF109203X group rats at
16 weeks after the beginning of treatment. B) H&E staining data shows the morphological changes in the retinal tissues of the NC,
DR, DR+VEGF agonist, DR+GF109203X, and DR+VEGF agonist+GF109203X group rats. C) Blood glucose levels in the NC, DR,
DR+VEGF agonist, DR+GF109203X, and DR+VEGF agonist+GF109203X group rats. D,E) ELISA assay results show the membrane
and cytosolic PKC activity in the retinal tissues of the NC, DR, DR+VEGF agonist, DR+GF109203X, and DR+VEGF
agonist+GF109203X group rats. *p<0.05; ** p<0.01; ##p<0.01 vs DR; &&p<0.01 vs DR+VEGF agonist.

Figure 3. VEGF regulates PKC activity and the PKC/ET/NF-κB signaling pathway in the retinal tissues of the DR model rats. A,B)
ELISA assay results show the (A) membrane and (B) cytoplasmic PKC activity in the retinal tissues of the NC, DR, DR+VEGF inhibitor,
and DR+VEGF agonist group rats. C) Western blotting analysis shows the expression levels of PKCβ2 in the retinal tissues of the NC,
DR, DR + VEGF inhibitor, and DR + VEGF agonist group rats. D-H) RT-qPCR analysis shows the mRNA expression levels of ET-1
(D), ET-3 (E), ET-A (F), ET-B (G), and NF-κB (H) in the retinal tissues of the NC, DR, DR + VEGF inhibitor, and DR + VEGF agonist
group rats. **p<0.01 vs NC; ##p<0.01 vs DR.
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VEGF agonist-induced hyperactivation of the PKC/ET/NF-
κB/ICAM-1 signaling axis in the retinal tissues of the DR rats
was reversed by treatment with GF109203X (Figures 5 and 6).

These data demonstrated that GF109203X suppressed VEGF-
induced DR progression by inhibiting the PKC/ET/NF-
κB/ICAM-1 signaling pathway. 

Figure 6. PKCβ2 inhibitor inhibits transcription of ETs and NF-κB in the retinal tissues of the DR model rats. A-E) RT-qPCR analysis
show the mRNA expression levels of ET-1 (A), ET-3 (B), ET-A (C), ET-B (D), and NF-κB (E) in the retinal tissues of the NC, DR,
DR+VEGF agonist, DR+GF109203X, and DR+VEGF agonist+GF109203X group rats. **p<0.01 vs DR; ##p<0.01 vs DR+VEGF agonist.

Figure 5. PKCβ2 inhibitor decreases VEGF and ICAM-1 expression levels in the retinal tissues of the DR rats. A) Immunochemistry
analysis shows the expression levels of VEGF and ICAM-1 proteins in the retinal tissues of the NC, DR, DR+VEGF agonist,
DR+GF109203X, and DR+VEGF agonist+GF109203X group rats. B) Western blotting analysis shows the expression levels of VEGF
and ICAM-1 proteins in the retinal tissues of the NC, DR, DR+VEGF agonist, DR+GF109203X, and DR+VEGF agonist+GF109203X
group rats. C) RT-qPCR results show the VEGF and ICAM-1 mRNA levels in the retinal tissues of the NC, DR, DR+VEGF agonist,
DR+GF109203X, and DR+VEGF agonist+GF109203X group rats. **p<0.01 vs DR; ##p<0.01vs DR+VEGF agonist.
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Discussion
VEGF is one of the main mediators of DR because it stimu-

lates vascular endothelial cell growth and proliferation, and neo-
vascularization in the retinal tissues.8,18 In the normal physiological
state, low expression of VEGF is required to maintain and repair
vascular damage in the various tissues of the human body.8-10

However, in the diabetic patients, hyperglycemia and dyslipidemia
induces an hypoxic environment, which stimulates VEGF overex-
pression and secretion.19 In our study, treatment of rats with STZ
(VEGF agonist) increased the expression levels of VEGF and were
accompanied with decreased body weight and increased blood glu-
cose levels and histopathological scores. This demonstrated suc-
cessful generation of the in vivo DR model rats. 

PKC represents a family of phospholipid-dependent
serine/threonine protein kinases with several isoforms that are
widely found in most cells and tissues including the retina, kidney,
and heart.20 PKC activation is associated with cellular prolifera-
tion, differentiation, and apoptosis.21,22 Chronic hyperglycemia
induces hypoxia, which in turn promotes neovascularization by
activating PKC.23,24 Several studies have shown that activation of
PKC plays a crucial role in DR pathology. For example, Choi et al.
and Sarikaya et al. reported elevated PKC activity in the in vitro
and in vivo DR models.25,26 The expression of PKCβ2, a subtype of
PKC, is associated with obesity and related metabolic diseases.27,28

Furthermore, activation of PKC promotes overexpression of
endothelins (ETs), which are potent vasoconstrictors that adversely
affect the endothelial function of the blood vessels and cause reti-
nal damage.29-31 NF-κB is a ubiquitous transcription factor that reg-
ulates gene expression in response to stimulation by cytokines and
other growth and inflammatory factors.32 Recent studies have
shown that NF-κB is closely associated with the onset and progres-
sion of diabetic vascular lesions.33,34 Furthermore, the expression
of NF-κB is significantly increased in response to a long-term
high-glucose environment.35,36 Therefore, NF-κB plays an essential
role in the onset and progression of DR. Consistent with previous
studies, our data demonstrated elevated PKC activity and activa-
tion of the PKC/ET/NF-κB signaling pathway in the STZ-triggered
DR rats. Furthermore, treatment of DR rats with the VEGF agonist
resulted in hyper-activation of the PKC/ET/NF-κB signaling path-
way, whereas, treatment with the VEGF inhibitor significantly
decreased activation of the PKC/ET/NF-κB pathway. 

ICAM-1 is a cell surface glycoprotein and a key player in
inflammatory responses and immune regulation.37 ICAM-1 is an
essential member of the ICAM family that participates in signaling
pathways that mediate secretion of various inflammatory factors,
stimulate the attachment of leukocytes to the capillary endotheli-
um, and induce vascular endothelial injury.38,39 Therefore, suppres-
sion of ICAM-1 gene expression alleviates infiltration of inflam-
matory cells and reduces microvascular injury. ICAM-1 expression
is significantly up-regulated in patients with DR.40,41 Our data also
demonstrated elevated expression of ICAM-1 in the STZ-induced
DR rats. Furthermore, our study demonstrated that the VEGF ago-
nist significantly increased ICAM-1 expression through the
PKC/ET/NF-κB signaling pathway and aggravated DR. 

Our study has few limitations. We did not investigate if the
expression levels of ICAM-1 modulated the expression levels of
VEGF in DR. Moreover, further studies are necessary to identify
the downstream targets of ICAM-1 and VEGF in DR.

In conclusion, our study demonstrated that VEGF increased
ICAM-1 expression through the PKC/ET/NF-κB signaling pathway in
DR. Furthermore, VEGF inhibitor and the PKC inhibitor significantly
reduced DR pathology by suppressing the VEGF/PKC/ET/NF-
κB/ICAM-1 signaling activity. Therefore, VEGF/PKC/ET/NF-
κB/ICAM-1 signaling pathway is a potential therapeutic target for DR. 
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