Senescence-associated β-galactosidase staining over the lifespan differs in a short- and a long-lived fish species

Simon Schöfer,1* Sylvia Laffer,1* Stefanie Kirchberger,2 Michael Koth Mayer,1 Renate Löhnert,1 Elmar E. Ebner,1 Klara Weipoltshammer,1 Martin Distel,1 Oliver Pusch,1 Christian Schöfer1

1Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna
2St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria

*These authors contributed equally

During the aging process, cells can enter cellular senescence, a state in which cells leave the cell cycle but remain viable. This mechanism is thought to protect tissues from propagation of damaged cells and the number of senescent cells has been shown to increase with age. The speed of aging determines the lifespan of a species and it varies significantly in different species. To assess the progress of cellular senescence during lifetime, we performed a comparative longitudinal study using histochemical detection of the senescence-associated beta-galactosidase as senescence marker to map the staining patterns in organs of the long-lived zebrafish and the short-lived turquoise killifish using light and electron microscopy. We compared age stages corresponding to human stages of newborn, childhood, adolescence, adult and old age. We found tissue-specific but conserved signal patterns with respect to organ distribution. However, we found dramatic differences in the onset of tissue staining. The stained zebrafish organs show little to no signal at newborn age followed by a gradual increase in signal intensity, whereas the organs of the short-lived killifish show an early onset of staining already at newborn stage, which remains conspicuous at all age stages. The most prominent signal was found in liver, intestine, kidney and heart, with the latter showing the most prominent interspecies divergence in onset of staining and in staining intensity. In addition, we found staining predominantly in epithelial cells, some of which are post-mitotic, such as the intestinal epithelial lining. We hypothesize that the association of the strong and early-onset signal pattern in the short-lived killifish is consistent with a protective mechanism in a fast growing species. Furthermore, we believe that staining in post-mitotic cells may play a role in maintaining tissue integrity, suggesting different roles for cellular senescence during life.

Key words: SA-βGal; teleost; senescence; aging; Nothobranchius furzeri; Danio rerio.

Correspondence: Christian Schöfer, Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria. Tel. +43.1.40160-37713. E-mail: christian.schoefer@meduniwien.ac.at

Contributions: the study was conceptualized by CS, KW, OP; experiments were mainly performed by SS, SL with contributions from CS. Animal provision and intellectual input from EEE, MK, RL, SK, MD. Data analysis was mainly done by SS, KW, CS with input from SL. Manuscript drafting by CS with intellectual input by all authors. All the authors read and approved the final version of the manuscript and agreed to be accountable for all aspects of the work.

Conflict of interest: the authors declare no conflict of interest, and all authors confirm accuracy.

Availability of data and materials: the datasets are available from the corresponding author upon reasonable request.

Funding: the study was supported by the Austrian Science Fund (FWF)/Herzfelder’sche Familienstiftung grants P30642-b28 (to CS) and P34191 (to OP).
Introduction

Aging is the consequence of a complex interplay of external stimuli and cell-autonomous factors with cellular damage as a key factor. Damaged nuclear or cytoplasmic molecules accumulate in cells, causing the cells to permanently exit the cell cycle but remain viable, a state known as cellular senescence. Senescent cells exhibit morphological and molecular signatures that distinguish them from other non-dividing cells, such as quiescent cells. Cellular senescence can be triggered by a variety of stress factors, such as telomere attrition, mitochondrial dysfunction, cell damage by free radicals, UVB light, γ-irradiation, or chemotherapeutic drugs, hence a tumor-suppressive function of senescence has been proposed. Accordingly, an increase in senescent cells with age has been demonstrated in both cultured cells and in many organisms, including humans. In addition, the targeted removal of senescent cells (senolytics) in mice led to better health and an increased lifespan. However, the relation between age and number of senescent cells is complex, as senescent cells have also been shown to be beneficial under physiological conditions such as wound healing, tissue repair, developmental processes and are required for the functionality of normal adult tissues such as the liver. The ambivalent roles of senescent cells are emphasized by a study in humans that showed that senescence-associated genes associate with anti-longevity, while anti-senescence-associated genes correlate rather with longevity. Cellular senescence is characterized by significant changes in gene expression, such as down-regulation of DNA repair factors, upregulation of senescence-induced heterochromatin factors and the compensatory upregulation of pro-mitotic signals, whereby senescent cells remain in an arrested but hyperactive state. A prominent feature of senescent cells is an altered secretome, termed the “senescence-associated secretory phenotype” (SASP), which is associated with an increase in number, size and activity of lysosomes. Paracrine secretion from senescent cells has been demonstrated to influence neighboring cells to also enter a senescent state (bystander senescence). Progress in better understanding cellular senescence is hampered by the lack of unique markers of aging and senescence. In the absence thereof, surrogate markers are identified to identify processes that are known to be altered in aging cells. For microscale-based studies, the histochemical reaction for the detection of senescence-associated beta galactosidase (SA-βGal, SABG) is widely used, which results in a dark blue precipitate. SA-βGal is an important enzyme of lysosomes and a component of SASP and is therefore highly expressed in senescent cells. The exact relationship between SA-βGal expression levels and aging is not well understood, but it has been shown that SA-βGal staining is closely related to the development of cellular senescence, i.e. it increases with age. The rate of aging determines the lifespan of an organism and varies greatly from organism to organism. Therefore, it is tempting to compare the SA-βGal reaction in tissues of a long-lived and a short-lived species during their lifetime. In this study, we used two teleost fish aging model systems, the long-lived zebrafish Danio rerio and the short-lived turquoise killifish Nothobranchius furzeri (further named “killifish”) with maximum survival rates of 60 months and 19 weeks respectively. In zebrafish, SA-βGal whole-mount and tissue staining at different ages showed a gradual overall increase of senescence with age in the skin, intestine and testis and in brain. In telomerase null-mutant zebrafish, SA-βGal-positive cells accumulated in intestine, testis, kidney and skeletal muscle. In killifish, age-dependent increase in SA-βGal staining in the brain, in the skin and has been reported. Age-dependent increase in SA-βGal-positive cells was also found in the closely related annual fish N. guentheri in the skin, intestine and ovary. A comprehensive microscopy-based study of SA-βGal-staining in zebrafish and killifish is lacking. Here, we present a comparative interspecies study at light and electron microscope level across organs and tissues over the entire lifespan for both species, the short-lived killifish and the long-lived zebrafish at corresponding age stages.

Materials and Methods

Fish husbandry

D. rerio and N. furzeri strain GRZ) were maintained in two independent facilities, both certified by national agencies. Zebrafish were reared in a research fish facility (Tecniplast, Buguggiate, VA, Italy) at the CCRI under license GZ:565304/2014/6 of the local authorities (Vienna municipal administration MAS8) and killifish in a facility at the Center for Anatomy and Cell Biology under license BMBWF-66.009/0130-V/3b/2018 (Austrian Federal Ministry of Education, Science and Research). The zebrafish were kept under standard conditions, while killifish were fed a diet of nauplia larvae (newborns) and Chironomus larvae (older stages). The killifish were kept under 12-h. dark-light cycle at a constant temperature of 28°C. Under these husbandry conditions, the majority of killifish (90%) have a maximum survival time of 19 weeks from hatching to death.

Selection of age stages

We analyzed age stages that roughly correlate with each other, taking into account the very different lifespans of Nf and Dr, and analyzed organs corresponding to human age stages (zebrafish stages according to Kimmel et al. and Gilbert et al.). The age of zebrafish was counted from fertilization (days post-fertilization, dpf). Under the standard conditions used they hatch 2-3 days later. Killifish have a much longer embryonic developmental time as a consequence of evolutionary adaptation to environmental conditions (life in temporary pools), and counting began at hatching (days post-hatching, dph). Thus, human newborn age corresponds to 4 dpf for killifish and 5 days dpf for zebrafish, childhood to 3 weeks for killifish and 6 weeks for zebrafish, adolescence to 5 weeks for killifish and 6 months for zebrafish, adulthood to 12-13 weeks for killifish and 15 months for zebrafish, old age to 18-20 weeks for killifish and 26 months for zebrafish.

Tissue handling

Depending on the size of the animals, the fish were either processed in toto, i.e. in the case of killifish at the ages of 4 dpf (newborns), 3 weeks (children) and 5 weeks (adolescents), and in the case of zebrafish at ages of 5 days dpf (newborns) and 6 weeks dpf (children). Animals were killed using 400 mg/L MS-222 (tricain). In older animals, the gut tube, liver, heart, brain, kidneys, skeletal muscle and gonads were isolated and further processed. At least three animals were processed for each species/age (n=3). All fish/organisms were fixed overnight with 4% paraformaldehyde, washed with PBS, embedded in cryomolds with O.C.T. compound (Tissue-Tek; Sakura Finetek, Nagano, Japan) and placed on dry ice. Cryosections were processed for histochemistry, for immunofluorescence, the intestines of killifish, fixed as above, were embedded in paraffin.

Immunofluorescence staining

Proliferating cells in the intestine were detected on paraffin sections using a mouse anti-PCNA antibody (RRID:AB_628110; Santa Cruz Biotechnology, Dallas, TX, USA), diluted 1:50-1:100 at 4°C overnight, followed by a goat anti-mouse Alexa488 secondary antibody (Invitrogen, Waltham, MA, USA), diluted 1:500-1:1000.
at room temperature for 30 min with prior antigen retrieval (HIER; 30 min steaming with 10 mM citrate buffer, pH = 6.0). Thereafter, we performed autofluorescence quenching using TrueView (Vector Laboratories, Newark, CA, USA) prior to counterstaining with DAPI (0.1 µg/mL, at room temperature for 6 min); a coverslip was mounted with Vectashield (Vector Laboratories). The primary antibody was omitted for negative controls (not shown).

Dextran labeling of kidneys

A protocol established for zebrasfish was applied to adult male killifish. To minimize harmful interventions only one (male) individual was used (n=1). The fish was anesthetized with 100 mg/L tricaine (MS-222) and received an intraperitoneal injection of 15 µL of a 50 mg/mL solution of a dextran-RTIC (Wt 9400, Sigma R8881; Sigma-Aldrich, St. Louis, MO, USA) in deionized water before returning to the tank. 24 h later, kidneys were harvested, fixed overnight in 4% paraformaldehyde and processed for cryosectioning as described above. The sections were used for SA-ßGal staining as described below.

SA-beta Gal staining on cryosections

The SA-ßGal enzyme hydrolyses beta galactosides into monosaccharides. The most commonly used experimental substrate for SA-ßGal reactivity is XGal (5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside), which is catalysed by SA-ßGal into galactose and 5-bromo-4-chloro-3-hydroxyindole, producing an indigo-blue precipitate. As a lysosomal enzyme, it is ubiquitously available staining kit (Cell Signaling Technology, Danvers, MA, USA; #9860) was used according to the manufacturer’s instructions. Briefly, slides were washed in distilled water, then in PBS, and incubated overnight in a sealed chamber with β-galactosidase staining solution. Care was taken to adjust the pH value of the latter to 6.0. Shorter incubation times reduced the signal intensities but did not alter the staining patterns. After short washes of slides with PBS, slides were immersed in PBS containing DAPI and the coverslips were mounted with Citifluor (EMS, Hatfield, PA, USA). These last steps were performed in horizontal orientation to reduce detachment of cryosections from glass slides. DAPI (0.1 µg/mL; room temperature, 6 min) was used to identify unstained tissues and to stain nuclei for SA-ßGal reactivity is XGal (5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside), which is catalysed by SA-ßGal into galactose and 5-bromo-4-chloro-3-hydroxyindole, producing an indigo-blue precipitate. As a lysosomal enzyme, it is ubiquitously available staining kit (Cell Signaling Technology, Danvers, MA, USA; #9860) was used according to the manufacturer’s instructions. Briefly, slides were washed in distilled water, then in PBS, and incubated overnight in a sealed chamber with β-galactosidase staining solution. Care was taken to adjust the pH value of the latter to 6.0. Shorter incubation times reduced the signal intensities but did not alter the staining patterns. After short washes of slides with PBS, slides were immersed in PBS containing DAPI and the coverslips were mounted with Citifluor (EMS, Hatfield, PA, USA). These last steps were performed in horizontal orientation to reduce detachment of cryosections from glass slides. DAPI (0.1 µg/mL; room temperature, 6 min) was used to identify unstained tissues and to stain nuclei for SA-ßGal reactivity.

SA-beta Gal staining for electron microscopy

For ultrastructural analysis of SA-ßGal staining, we applied an en-bloc protocol for the detection of XGal in transgenic mice at electron microscopy level with minor modifications. Briefly, we prepared small pieces of tissue of sizes suitable for TEM and fixed these pieces with 2.5% glutaraldehyde + 1% paraformaldehyde + 1% sucrose in PBS for 3 h at room temperature. After washing in PBS, the tissue blocs were transferred to PBS adjusted to pH=6.0 and then subjected to the SA-ßGal reaction overnight as described above. After washing with PBS and deionized water, the blocs were post-fixed with 1% aqueous osmium tetroxide for 1 h, washed with deionized water, dehydrated in an ascending series of ethanol incubations (10 min each), transferred to propylene oxide for 1 x 5 min and 1 x 2 min and a 1:1 mixture (v:v) of propylene oxide and Epon812 for 30 min and then incubated overnight in pure Epon812. The blocs were then cured at overnight 60°C. Semithin sections of 350 nm thickness were cut, imaged, counterstained with toluidine blue and imaged again. The dark blue color of toluidine blue could easily be distinguished from the turquoise-light blue color of the SA-ßGal reaction. For EM, ultrathin sections were cut at 70 nm and contrasted with 1% uranyl acetate (methanol) and lead citrate.

Imaging

Images of the stained cryosections were acquired with an Evident VS120 automated slide scanning system. First, a fluorescence overview image (DAPI) of the entire slide was recorded to identify all organs. Subsequently, images of identical areas were taken in transmitted light mode to capture the SA-ßGal staining using a 40x NA1.3 dry lens. All transmitted light images were acquired with identical exposure time and saved as 8-bit images in the proprietary .vsi file format. The images were viewed and appropriate positions for measurements were selected with VS Desktop software (Evident). Selected areas were copied to the clipboard and transferred to image analysis software (see below).

Image evaluation and data processing

The morphological characterization of zebrafish and killifish sections was based on Menke et al. and Dykova et al. Differing staining patterns of SA-ßGal per organ were observed: in the liver, a relatively homogenous staining was observed across the entire organ, whereas most other organs showed positive signal in cell accumulations, or in certain structures or in certain tissues within organs that resulted in a heterogeneous staining pattern. In both cases, signal intensities were different at different age stages. To account for those differences, we adapted the principle of Allred scoring, which is known from pathology, where it is typically used to evaluate immunohistochemical reactivity patterns across mammmary tissue sections. This semi-quantitative evaluation method considers three parameters: a) the proportion of positive cells of all cells; b) the overall signal intensity of the sectioned organ; and c) the signal intensity of positive cells only. The categories for the staining patterns for parameter a (i.e., the ratio of positive cells to all cells) were: 0 none, 1 <1:100, 2 1:100-1:10, 3> 1:10 and for parameters b and c: 0 none, 1 weak, 2 intermediate and 3 strong. Blinded evaluation was performed by two investigators. In addition to this semi-quantitative approach, we performed grey value density measurements of the organ overall intensity per section and the intensity of the positives therein (parameters b, c from above). Suitable image areas were selected in the VS Desktop software and transferred to the open-source software Fiji, where all measurements were done on images with 8-bit color depth. For measurements on whole organs (parameter b), the sectioned area of an organ was manually outlined using the DAPI image as reference and mean grey density was measured; an area outside was measured for background density. For measurement of intensities of positives (parameter c), the color thresholding mode of Fiji was applied by manually adjusting the color sliders to select appropriate “blueness” (hue) values in the blue color space and adjusting the brightness to select only the cells and areas with SA-ßGal staining (Otsu thresholding). The generated mask was used to measure the mean grey values on the original image. The measured mean grey values were transferred to a spreadsheet program (Microsoft Excel). The grey values were inverted and the background was subtracted from measured values. The resulting values were expressed as percentage of black (255; inverted). We used Adobe Photoshop to arrange figures and Microsoft PowerPoint for the final design and labelling.
Results

Evaluation of SA-ßGal staining

The staining pattern was different in the investigated organs: a homogeneous distribution of positive cells was only found in liver, while the other organs displayed a heterogeneous pattern, i.e., only some cells, structures or tissues were positive within an organ. At the same time, we also found differences in the signal intensity of the positive cells, with all these parameters varying over the lifetime. For quantification, we found that the Allred scoring system, which is used for immunohistochemical evaluation in pathology, best covers the observed staining patterns. It takes into account the proportion of positive cells of all cells in a section of an organ as well as the signal intensity of positive cells. In addition, the scoring asks for the signal intensity in the whole section of the organ, which can be considered as a function of the aforementioned parameters (Figure 1). Since, to our knowledge, Allred scoring has not yet been applied to SA-ßGal staining, we wanted to compare the results of the semi-quantitative Allred scoring, which was performed by two individuals in a double-blinded fashion, with a second, independent and quantitative approach. For this purpose, we performed intensity measurements on whole sections and on only positive cells (Figure 2 B,C; Supplementary Figure 1A). Comparison of the results of both approaches with respect to these two parameters yielded concordant results, suggesting that double-blinded Allred scoring is a suitable evaluation strategy that covers most aspects of the observed staining patterns.

General SA-ßGal staining patterns

SA-ßGal staining varied considerably between organs, along lifetime and between the two species (Figure 2A). In some organs, the signal intensity varies substantially throughout lifetime, while others are rather constantly stained during life. In other tissues little or no signal is detectable even at old age. For example, in killifish, the heart shows high intensity staining throughout lifetime, whereas skeletal muscle displays very low staining until old age. Unexpectedly, some tissues in killifish already showed reactivity in newborns, while in others an increase was observed toward adulthood and old age. Interspecies comparison across the lifespan revealed that the intensity of staining in zebrafish was generally much lower and occurred much later in life than in killifish. An extreme example is the heart, which in killifish shows strong signal from the newborn stage onwards but in zebrafish remains almost undetectable until adulthood. However, the signal pattern in the same organs were remarkably similar in both species. Measurement of grey values over the entire organ section and of intensities of positive cells revealed a general pattern of increasing staining with age, from low to absent signal in the newborn stage to adulthood, where a slight but significant decrease can be observed (exception gonads), before the staining intensity increases again towards old age stage (Figure 2 B,C; Supplementary Figure 1A). The proportion of positive cells in all cells remains relatively constant in all organs along the lifespan, which indicates tissue specificity of SA-ßGal staining. An exception is the liver and, to a lesser extent, the brain, where the proportion increases significantly with age.

SA-ßGal staining in the intestine

The stomach-less gut tube of both species forms a relatively simple bended tube with an inner relief of folds and intervening interfold regions. We focused on the small intestine and found prominent SA-ßGal staining in the epithelial lining of the folds where both enterocytes and goblet cells were stained (Figure 3 A,B). Closer inspection revealed that the positive signal in killifish was restricted to the apical segment of cells, where the release of beta-galactosidase through the apical membrane was observed (Figure 3C). It is noteworthy that the interfold regions were devoid of SA-ßGal staining. Immunofluorescence labelling to detect proliferating cells (PCNA) identified these regions as those where cell divisions occur in the intestinal epithelia (Supplementary Figure 2B). Apart from the epithelial lining, single positive cells were scattered through the lamina propria, possibly representing [European Journal of Histochemistry 2024; 68:3977]
immune cells. The intensity of whole organ and positive cell signal increases from newborns towards adolescent animals, followed by a characteristic attenuation in adulthood, before increasing again towards old age (Figures 1 and 2 B,C; Supplementary Figures 1A and 2A). Staining in the colon was similar but we observed a higher signal intensity at early age when compared to the small intestine (data not shown). When PCNA staining is compared with SA-βGal, the SA-βGal staining begins incipient with terminal differentiation into enterocytes and goblet cells. It will be interesting to investigate whether senescence triggers the exit of transient-amplifying cells from cell cycle or whether senescence is a consequence of cell cycle exit, as the SA-βGal staining persists while cells migrate upwards on the fold.

SA-βGal staining in the liver

Both species lack liver lobules known from mammals and no periportal fields are present. SA-βGal staining was present in single cells homogeneously distributed throughout the liver parenchyma (Figure 3D). Interestingly, we never observed cluster formation of positive cells. Closer examination revealed that positive cells were indeed hepatocytes (Figure 3 E,F). In addition, particles could be seen in the space of Disse and in liver sinusoids, suggestive of secretion from hepatocytes. No signal was observed in other cells, such as fibroblasts, although isolated fibroblast cells from zebrafish liver were shown to stain positively in vitro in late passage cell culture. In case of killifish liver, all evaluated parameters showed an increase from newborn to adulthood, reaching a plateau in adulthood and an increase toward old age. In zebrafish, staining was only detectable from adolescence onwards and then showed the same characteristics as in killifish, albeit at a lower intensity level (Figures 1 and 2 B,C; Supplementary Figures 1A, B and 2A).

SA-βGal staining in the heart

The morphology of the heart of zebrafish has been described as consisting of an unseptated atrium, ventricle and bulbus arteriosus. The ventricular wall shows intense trabeculation (hypertrabeculation compared to endothermal hearts) with a comparatively thin compact myocardial layer. The killifish heart has not been described yet but we found a similar morphology to zebrafish. The heart was consistently the most intensely stained organ, and the signal intensity was always significantly higher in killifish than in zebrafish. The staining was stronger in the ventricle than in the atrium. On closer inspection, we found that the signal was strongest in the endocardial epithelial lining, where all cells were strongly positively stained. Cardiomyocytes were not or weakly stained in the centers of the cells, but showed an increased staining towards the periphery of cells lying directly beneath the endocardial epithelial cells (Figure 3G). Staining could also be found adjacent to the cell membrane of the endocardial cells, indicating galactosidase release. The signal at the basal side of endocardial cells appears to diffuse into the neighbouring cardiomyocytes, leading to a denser signal at the periphery of myocytes. Of note, we did not observe signal in the nuclear envelope space and endoplasmic reticulum of myocytes, suggesting that endothelial cells are the source of staining in myocytes. Within the myocytes, the signal appears to penetrate into the myofibrils of the en-bloc processed tissue (Figure 3 H1). Interestingly, the hearts of newborn killifish already showed strong signal, which persisted until adulthood, followed by a significant increase in staining at old age. In stark contrast, the hearts of zebrafish were negative most of the time and only showed some staining at old age, although that was significantly below signal intensity of killifish (Figures 1 and 2 B,C; Supplementary Figures 1A and 2A). This difference can be seen as a rather extreme temporal shift in the onset of beta-galactosidase expression between the two species. Other cardiac cells known to become senescent in mammals were not stained, such as cardiac blood vessel endothelial cells or fibroblasts, although isolated mammalian cardiac fibroblasts are known to acquire staining in vitro at late passages.

SA-βGal staining in the brain

The structure of the zebrafish brain has been intensively studied and well documented. For the killifish brain, an increase in SA-βGal staining throughout lifetime has been reported, along with an increase in many parameters of aging-related neurodegenerative diseases. In line with these reports, we found staining restricted to distinct cell groups, likely neuronal nuclei (Figure 4 A,B). These clusters were found in the brain stem in killifish, while the prominent optic tectum was not stained. In newborn killifish, the structure of the zebrafish brain has been intensively studied and well documented. For the killifish brain, an increase in SA-βGal staining throughout lifetime has been reported, along with an increase in many parameters of aging-related neurodegenerative diseases. In line with these reports, we found staining restricted to distinct cell groups, likely neuronal nuclei (Figure 4 A,B). These clusters were found in the brain stem in killifish, while the prominent optic tectum was not stained. In newborn killifish, the structure of the zebrafish brain has been intensively studied and well documented. For the killifish brain, an increase in SA-βGal staining throughout lifetime has been reported, along with an increase in many parameters of aging-related neurodegenerative diseases. In line with these reports, we found staining restricted to distinct cell groups, likely neuronal nuclei (Figure 4 A,B). These clusters were found in the brain stem in killifish, while the prominent optic tectum was not stained. In newborn killifish, the structure of the zebrafish brain has been intensively studied and well documented. For the killifish brain, an increase in SA-βGal staining throughout lifetime has been reported, along with an increase in many parameters of aging-related neurodegenerative diseases. In line with these reports, we found staining restricted to distinct cell groups, likely neuronal nuclei (Figure 4 A,B). These clusters were found in the brain stem in killifish, while the prominent optic tectum was not stained.
the number of positive cells as well as their staining intensity is very low. Both parameters rise significantly during childhood and adolescence, followed by a decrease at adulthood and an increase towards later life (Figures 1 and 2 B,C; Supplementary Figures 1A and 2A). While the intensities in zebrafish are much lower than in killifish, the increase in intensity of the positive cells reaches a similar level with age.

SA-ßGal staining in the kidney

The anatomy of the kidney is different in the two species. The kidneys of the zebrafish are structured in a head and a trunk region, while the kidney of the killifish represents the type of head kidney without caudal extension. In both species, the kidneys contain nephrons consisting of glomeruli and proximal and distal tubules merging into collective ducts. In addition, the kidneys of both species exhibit prominent hematopoietic activity and contain endocrine tissue corresponding to the mammalian adrenal gland. The structure of zebrafish kidneys is well characterized at the molecular level. Detailed ultrastructural morphology is lacking in zebrafish and killifish. We have observed substantial SA-ßGal staining of the killifish kidneys (Figure 4C). The staining occurs predominantly in some but not all tubules, but not in the glomeruli, and it is absent in endocrine tissue and occurs only sporadically in hematopoietic cells. This differs from mammals, where several cell types of the kidney were reported to become senescent with age and disease.\(^{70,71}\) We found it difficult to clearly identify which tubule segment was stained based on morphological criteria. Therefore, we injected fluorescently labelled dextran into killifish, which is known to be preferentially enriched in proximal tubules in many species, including zebrafish.\(^{38}\) The combination of dextran labelling with SA-ßGal staining demonstrated that SA-ßGal-positive tubules represent a subsection of proximal tubules (Figure 4F). Since not all dextran-labelled tubules were also SA-ßGal stained (but all SA-ßGal stained tubules were dextran-positive), further analysis is required to study whether SA-ßGal staining can be allocated to specific segments of proximal tubules or whether it represents a dynamic progress of senescence during life. Fine structural observation revealed that SA-ßGal staining occurred predominantly in the apical part of tubular epithelial cells and signs of secretion into the tubular lumen were observed (Figure 4 D,E). Overall signal intensities were low in newborns and increased significantly during adolescence, followed by the typical attenuation at adult-

![Figure 3](image_url)

Figure 3. SA-ßGal staining in killifish (Nf) and zebrafish (Dr) organs; representative images. **A** left Nf child intestine (3 weeks), cryosections, right Dr child intestine (6 weeks); dashed line: organ outline (based on DAPI image; not shown). **B** adult Nf intestine (12 weeks), semithin section; left SA-ßGal staining only; right overlay of SA-ßGal (red; false color) with toluidine blue; note intense staining in apical portions of enterocytes and goblet cells; some staining is also present in the remnant mucus lining of the epithelium (arrowheads). **C** SA-ßGal staining of adult Nf intestine (12 weeks) at the EM level; precipitates can be seen in the cytoplasm, in the brush border and also in the intestinal lumen (arrowhead). **D** left Nf child liver (3 weeks), cryosections, right Dr adolescent liver (6 months). **E** adult Nf liver, semithin section; left SA-ßGal staining only; right overlay of SA-ßGal (red; false color) with toluidine blue; note intense staining in hepatocytes (lipid droplets typical for Nf livers are also present (arrowhead)). **F** SA-ßGal staining in adult Nf liver (12 weeks) at the EM level; precipitates can be seen in a hepatocyte. **G** left Nf child heart (3 weeks), cryosections, right Dr adolescent heart (6 months). **H** adult Nf heart, semithin section; left SA-ßGal staining only; right overlay of SA-ßGal (red; false color) with toluidine blue; note very prominent staining of endocardial endothelial cells, whereas staining is only present at the periphery of myocytes (arrowhead). **I** SA-ßGal staining in adult Nf heart myocardium (12 weeks) at the EM level; precipitates can be seen among sarcomeres. Scale bars: A,D,G) 500 µm; B,E,H) 10 µm; C,F,I) 1 µm.
hood and a sharp increase in old age. Again, the overall signal intensity was much lower in zebrafish than in killifish (Figures 1 and 2 B,C; Supplementary Figures 1A and 2A). However, the signal intensity of positive cells increases much more with age in zebrafish reaching similar values as in killifish at old age.

SA-βGal staining in the skeletal muscle

Old killifish have reduced locomotion abilities, which is why killifish is also a model system for sarcopenia research. Therefore, we expected significant differences during the aging process in skeletal muscle tissue. Until adulthood, we found no detectable
staining in skeletal muscles of killifish. At old age, a substantial increase in positivity was observed, albeit at intensity levels lower than in other organs. Future studies will make it possible to faithfully attribute these positive cells to either myonuclei or satellite cells. The intensity in skeletal muscle of the zebrafish is consistently very low throughout lifetime (Figures 1, 2 B,C and 4G; Supplementary Figures 1A and 2A).

SA-βGal staining in the gonads

The anatomy of the killifish gonads is similar to that of zebrafish. Fertility rates are subjected to age-related changes in both species, reaching a maximum in adulthood and declining in old age. In killifish, we evaluated gonads from childhood onwards and in zebrafish from adolescence onwards. At young stages where the sexes could not be reliably distinguished, we used the term gonad and focused on testis in later life. SA-βGal staining is localized to individual cells of the interstitial connective tissue (Figure 4H, I). These cells are often located in the vicinity of capillaries and probably represent Leydig cells. SA-βGal staining in killifish recapitulates the general pattern with an increase of overall intensity during adolescence, a decrease in adulthood and a significant increase at old age. Although this signal patterns appears to be different from that of killifish, it should be noted that the staining in zebrafish gonads is generally very low (Figures 1, 2 B,C; Supplementary Figures 1A and 2A).

In killifish, we also performed SA-βGal staining in adult ovaries. Accumulations of stained cells were found in the interfolllicular stroma of ovaries, often in the vicinity of blood vessels, but not in follicles (Figure 4J). The nature of the stained cells is currently unclear, but morphologically they appear to belong to different cell populations, which could include endocrine stromal cells, monocytes, macrophages or mast cells.75 The pattern of ovarian staining resembles that found in ovaries of *N. guentheri*, where an increase over age has been observed.76

Sex-dependent SA-βGal staining

Differences in organs of both sexes were analyzed at adult stage of the killifish. At this stage, we found no significant differences between the two sexes in the intensities of the whole organ and of the positive cells. The only distinct exception detected was the proportion of positive cells of all cells in liver, which is significantly higher in males than in females (Supplementary Figure 1B). A subtle difference in the distribution of staining was observed in the kidney. Female killifish kidneys showed a broader spectrum of positively labelled tubules and more frequently and intensely labelled hematopoietic cells than male kidneys (*data not shown*). This however had no effect on the measured intensities (*i.e.* the intensities of the whole organ and the positive cells). Comparison of ovary and testis showed presence of stained cells in stromal tissue in both cases but no signal in follicles and testicular tubules (Figure 4 J, L). The lack of sex-specific SA-βGal staining is reminiscent of a recent RNASeq study in killifish brain, heart and skeletal muscle, which showed that age has a greater impact on gene expression than sex.77

SA-βGal staining in other tissues

Other stained tissues that were occasionally observed in killifish, but not quantified and not followed through life, included the spinal cord with a generally stronger signal than in the brain, the skin with increasing numbers and intensities of positive cells, the gills, the epithelial lining of the pharyngeal cavity, the ureter, the lens, the mesothelium, the meninges and the thyroid gland (*data not shown*). Tissues that were not or only weakly stained in killifish included connective tissue, smooth muscle, bone and cartilage, pancreas (exocrine), pseudobranch, air and gall bladder, and retina (*data not shown*). Zebrafish displayed conspicuous signal in the lens, which was the only tissue observed that showed staining in zebrafish at an earlier stage (newborn stage) than in killifish (Supplementary Figure 2A, section intestine, newborn).

Discussion

We found a tissue-specific SA-βGal staining pattern across organs in terms of the proportion of positive cells and the intensity of stained organs and cells. Tissue-specific variations of senescence have been reported in several mammalian species.12,15,74-76 We also found that the organ-specific patterns were almost identical in both species studied, but the onset of staining varied dramatically between the two species at the selected ages. While the measured parameters of zebrafish and killifish tended to converge at old age, the signal at younger ages differed markedly. Those organs of zebrafish that show staining show a more gradual increase during the aging process, which is consistent with an earlier report on SA-βGal staining of whole animals.42 In killifish, however, organs that are positive in newborns show different signal during lifetime. Some organs show a gradual increase starting from a higher level than in zebrafish (*e.g.*, kidney, brain), while others maintain strong staining from newborns throughout life (*e.g.*, heart). The reasons for this marked difference in SA-βGal staining between the short and the long-lived species remain speculative. A recent genomic study in killifish concluded that a relaxation of purifying selection is responsible for the accumulation of deleterious mutations in key life-history determining genes caused by genetic bottlenecks during the evolution of this annual species.77 In this context, our findings of early and strong SA-βGal staining in killifish are consistent with this study, confirming the genoprotective nature of senescence. The latter is most notable in the heart, where the inter-species difference is striking. The reasons for this remarkably different staining remain speculative for the moment. Indeed, senescence has been described in cardiomyocytes of mice, and has been related to cardiovascular diseases.79 In addition to cardiomyocytes, senescence has also been detected in heart fibroblasts and vascular endothelial cells,79,80 but to our knowledge, endocardial senescence has not been reported so far. In terms of tissue distribution, we find signal predominantly in epithelial cells rather than in other tissue types. For example, connective tissue was almost never stained to a detectable extent, which differs from in vitro fibroblast cultures in zebrafish46 and from what has been reported in mammals, *e.g.*, in the case of the heart (see above). In contrast, many of the cells positive for SA-βGal are terminally differentiated cells such as enterocytes and goblet cells of the epithelial lining of intestinal folds. The cause for SA-βGal positivity in these differentiated cells is unclear. Recent unpublished data from our lab suggest that cell replenishment in the intestinal epithelium of killifish is reduced with age, leading us to speculate that senescence may have a beneficial function in maintaining tissue integrity, perhaps triggered by stem cell exhaustion. Further studies on senescence in the intestinal epithelium will also be rewarding as it will allow one to study the plasticity of the senescence and apoptosis programs, as apoptosis is the inevitable endpoint of the previously senescent cells. At subcellular level, SA-βGal staining in polarized cells was predominately present at the apical and in some tissues at the basal parts of the cells, consistent with the secretory nature of SASP and it would also be in line with the reported bystander effect that triggers senescence in neighboring cells via paracrine secretion, shown in mice and zebrafish30,31 and in the mammalian heart.76 In the case of the heart, we could see staining consistent with such a
bystander effect, as SA-ßGal appears to leak into neighboring cardiomyocytes. Here, the signal was associated with muscle fibrils, suggesting an effect on contractility. However, we also saw staining on the apical surface and in the cardiac lumen, suggesting sequestration into the bloodstream. Similar sequestration into the lumen were observed in the intestine, renal tubules and in the liver into the circulation. The situation in the heart and liver raises the interesting question of whether the SA-ßGal “bystander” effect is limited to local, paracrine secretion to neighboring cells or if it can have a systemic effect on the entire organism.

In conclusion, our observation of intense SA-ßGal staining from a very early age onwards in the short-lived killifish sheds light on the progression and possible heterogeneous functions of cellular senescence in an organism that develops very rapidly to reach sexual maturity, which has been shaped by evolutionary selection pressure in the species natural habitat of temporary pools. The fast growth of killifish to reach sexual maturity appears to reflect an important function in maintaining structural tissue homeostasis, pointing to different roles that cellular senescence may play in killifish. Overall, we hope that the presented organ-specific map of SA-ßGal staining in killifish will be useful for further studies with this exciting model system for aging research.

References
52. Song L, Li C, Wu F, Zhang S. Dietary intake of diosgenin.

51. Graf M, Hartmann N, Reichwald K, Englert C. Absence of

40. Gerhard GS. Comparative aspects of zebrafish (Danio rerio) as

39. Van Houcke J, De Groef L, Dekeyster E, Moons L. The

48. Van Houcke J, Marien V, Zandecki C, Vanhunsel S, Moons L,

41. Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino

45. El Mai M, Marzullo M, de Castro IP, Ferreira MG. Opposing

42. Kishi S, Uchiyama J, Baughman AM, Goto T, Lin MC, Tsai

49. et al. Rag1 immunodeficiency-induced early

41. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-

40. Lu, Li, and Wu. Dietary intake of diosgenin.

39. Graf, M, Hartmann, N, Reichwald, K, and Englert, C. Absence

37. Menke, A, Spritsbergen, J, Wolterbeek, A, and Woutersen, R.

36. Marzullo, M, Mai, ME, Ferreira, MG. Whole-mount senescence-

35. Lu, Li, and Wu. Dietary intake of diosgenin.

34. Graf, M, Hartmann, N, Reichwald, K, and Englert, C. Absence

33. Lee, BY, Han, JA, Im, JS, Morrone, A, Johung, K, Goodwin, EC, et al. Senescence-associated beta-galactosidase is lysosomal

31. Lu, Li, and Wu. Dietary intake of diosgenin.

29. Lu, Li, and Wu. Dietary intake of diosgenin.

27. Lu, Li, and Wu. Dietary intake of diosgenin.

Online supplementary material:

Figure 1. Quantitative measurement of staining intensities in killifish and zebrafish.
Figure 2. SA-βGal staining throughout the lifespan of killifish and zebrafish.