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Hereditary muscle channelopathies are caused by dominant
mutations in the genes encoding for subunits of muscle vol-
tage-gated ion channels. Point mutations on the human ske-
letal muscle Na* channel (Nav1.4) give rise to hyperkalemic
periodic paralysis, potassium aggravated myotonia, para-
myotonia congenita and hypokalemic periodic paralysis type
2. Point mutations on the human skeletal muscle Ca** chan-
nel give rise to hypokalemic periodic paralysis and malignant
hyperthermia. Point mutations in the human skeletal chlori-
de channel CIC-1 give rise to myotonia congenita. Point
mutations in the inwardly rectifying K* channel Kir2.1 give
rise to a syndrome characterized by periodic paralysis, seve-
re cardiac arrhythmias and skeletal alterations (Andersen’s
syndrome). Involvement of the same ion channel can thus
give rise to different phenotypes. In addition, the same muta-
tion can lead to different phenotypes or similar phenotypes
can be caused by different mutations on the same or on dif-
ferent channel subtypes. Bearing in mind, the complexity of
this field, the growing number of potential channelopathies
(such as the myotonic dystrophies), and the time and cost of
the genetic procedures, before a biomolecular approach is
addressed, it is mandatory to apply strict diagnostic proto-
cols to screen the patients. In this study we propose a pro-
tocol to be applied in the diagnosis of the hereditary muscle
channelopathies and we demonstrate that muscle biopsy
studies and muscle cell cultures may significantly contribute
towards the correct diagnosis of the channel involved. DNA-
based diagnosis is now a reality for many of the channelo-
pathies. This has obvious genetic counselling, prognostic and
therapeutic implications.
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membrane is its excitability, that is the ability

to conduct electrical impulses across its
membrane in response to an action potential and to
propagate this electrical impulses along the muscle
fiber itself. Electrical impulses travel throughout the
nervous system by rapid shifts of the concentration
of ions across the cell membranes. These shifts in ion
channel concentration are conducted thorough ion-
specific channels which, comprise a family of trans-
membrane glycoproteins that are made up of two or
more subunits and use a variety of stimuli to trigger
their opening or gating. Voltage-gated ion channels
on the sarcolemma, are those selective for sodium,
potassium, chloride or calcium ions which open by
changes in voltage (usually depolarisations) across
the sarcolemma.

When mutations arise on the genes encoding one
of these skeletal muscle voltage-gated ion channels
(usually occurring on the a-subunits of the ion chan-
nels), the resulting phenotype is that of a hereditary
muscle channelopathy. In general, most mutations
cause gain-of-function defects (Hanna et al. 1998,
Davies NP et al 1999, Lehmann-Horn F 2002,
Cannon SC 1997, 2001). Loss-of-function changes
may also occur with disease-associated mutations
in ion channels (Lehmann-Horn F 2002).

According to the channel involved there are sodium,
calcium, chloride and potassium muscle chan-
nelopathies (Aguilar-Bryan L et al 1999; Ashcroft
FM et al 1998; Barchi RL 1995). It is however worth
noting that, decisive for the phenotype is the type of
functional defect brought about by the mutations,
rather than the channel affected. In fact, different
phenotypes like hyperkalemic and hypokalemic peri-
odic paralysis may be caused by the point mutations
in different parts of the same gene. Similarly different
genes can lead to similar phenotypes as is the case of
some cases of cold-triggered myotonia associated
with muscle weakness which may involve sodium or
chloride channel gene mutations (Jurkatt-Rott K et

O ne of the essential properties of the muscle
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Figure 1. Schematic representation of the skeletal muscle calcium channel (0-subunit) and associated mutations (filled circles).

al. 2001, Ptacek LJ et al., 1992).

No matter which channel is involved, the heredi-
tary muscle channelopathies share common charac-
teristics: there is usually a dominant inheritance; the
symptoms involved are typically episodic in nature,
that is they are triggered by different internal and
external factors; there is a general accepted rule
that acetazolamide improves symptoms. These fea-
tures lead to the general diagnosis of a channelopa-
thy. The diagnostic criteria for each channelopathy
have been set at the first European Consortium for
the Periodic Paralysis. Since then, new channelo-
pathies have been identified (Andersen’s syndrome)
and many muscle disorders have been recognized as
potential channelopathies. The muscular dystrophies
in general have been considered so far as the result
of the lack of structural proteins like dystrophin,
which lacking, disrupt the sarcolemma and give rise
to the dystrophic process and related weakness. The
recent demonstration that chloride channel mal-
functioning is involved in the myotonic phenomenon
of the myotonic dystrophies types 1 and 2 (Charlet
B et al. 2002; Mankodi et al. 2002a), indicates
these disorders may also be considered as potential
channelopathies and expands the field of the hered-
itary skeletal muscle channelopathies.
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In this study we propose a diagnostic clinical and
laboratory protocol to be applied as a screening in
potential channelopathies. In particular we demon-
strate that muscle biopsy and muscle cell cultures
may be considered an important supportive tool for
the correct identification of the channel involved.
DNA-based diagnosis is now possible for many of
the hereditary skeletal muscle channelopathies. This
has obvious genetic counselling, prognostic and
therapeutic implications. Collaborative efforts in
the field of the muscle histopathology and molecu-
lar genetics have resulted in improved understand-
ing of the disease mechanisms that underlie muscle
channelopathies.

Materials and Methods

Fifty patients from 18 families fulfilling the gen-
eral criteria for a potential hereditary muscle chan-
nelopathy according to the criteria described above
were included in the study. Ten patients from 4 fam-
ilies with myotonic dystrophy type 1 (DM1) accord-
ing to the criteria set at the International Myotonic
Dystrophy Consortium (IDMC 2000) and 10
patients from 7 families with myotonic dystrophy
type 2 (PROMM/DM2) according to the criteria
designed at the European International Consortium
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Figure 2. Schematic representation of the muscle sodium channel (a-subunit) and associated mutations (filled circles).
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SKELETAL MUSCLE CHLORIDE CHANNEL
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l. Gly— 230= Glu

2. Pro— 480— Leu
3. Gly— 200— Arg
4. Val— 286— Ala
5. lle— 290— Meti
6. Phe— 307— Ser
7. Ala— 313— Thr
8. Arg— 317—= Gln
9. Arg— 338— Gin
10.Gln— 552— Arg
11.Ile = 556 — Asn
12. Arg— §94— Stop

13. Asp—s 136— Gly
14. Phe— 413— Cys
15. Arpg—496— Ser
16. lle— 479— Gly—
483/Phe—
484(deletion)
17. 4bp deletion
18. Gln— 68— stop
19. Splice site
20. Gln— 74— stop
21. Arg— 105 Cys
22. Tyr— 150— Cys
23. Phe— 161— Val
24, Val— 165— Gly
25. Phe— 167— Leu
26. Val— 236— Leu
27. Thr— 261— Cys
28. Spice site
29. Gly—» 285— Glu

30. Glu— 291— Lys
31, Arg— 300—
Stop

32. Splice site

33, lle— 329— Thr
34. Fs— 387— stop
35. Ala— 415— Val
36. Fs— 429— stop
37. Fs— 433— stop
38, Fs—» 503— siop
39, Cys— 481—
stop

40. Gly— 482—
Arg

41. Met— 485—
Val

42. Splice site

43, Thr— 550
Met

44. Val— 563 lle
45, Phe— 708—

47, Pro— 932— Leu

Figure 3. Schematic representation of the chloride channel and associated mutations (filled circles).
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Figure 4. Schematic representation of the skeletal muscle chlo-
ride channel and associated mutations (filled circles).

(Moxley RT 3™ et al 2002) were also included in
the study.

After informed consent, all patients were subject-
ed to the following: detailed family history to iden-
tify potential affected asymptomatic family mem-
bers; neurologic examination including manual and
quantitative muscle strength testing; electromyo-
graphy with a standardized protocol to quantify
myotonia; additional assessment of myotonia by
subjective scales of severity, functional tests and
quantitation of relaxation time after maximum vol-
untary contraction; muscle biopsy. Cell cultures
from the muscle biopsy specimens obtained were
prepared for research purposes.

Patients

Potential calcium channelopathy: twenty-patients
with clinical and laboratory features of hypokalemic
periodic paralysis or calcium channelopathy were
studied (7 males, 13 females; age range: 20-48
years; mean age: 24.5+6.8) (Curtis BM et al 1984,
Hosey MM et al 1988; Takahashi M et al 1987). An
autosomal dominant transmission was recognized in
14 of 20 patients. Age at onset of symptoms was
11.8+3.4 and consisted of episodes of sudden
weakness, affecting all 4 limbs, triggered by carbo-
hydrate ingestion in 17 out of 20 patients. In the
remaining 3 patients the episodes of weakness were
triggered by prolonged exercise (football game, bicy-
cle). In all cases the clinical diagnosis of
hypokalemic periodic paralysis was made on the
basis of low levels of serum potassium during an
attack of weakness (below 3 mEqg/L). The episodes,
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Figure 5A and 5B. Schematic representation of the pathomech-
anisms involved in the myotonia of myotonic dystrophy type 1
(DM1) (Figure 5a) and of myotonic dystrophy type 2
(PROMM/DM2) (Figure 5b). MBNL = muscle blind proteins;
CUG-BP = double stranded CUG or CCUG binding proteins. CIC-
1 = skeletal chloride channel.

typically beginning in the morning on awakening,
lasted 48-72 hours, exercise facilitating recovery. A
common finding was that of triggering of symptoms
also during episodes of emotional stress. During the
interictal period 10 of 20 patients showed signs of a
limb-girdle myopathy affecting the lower limbs more
typically in the 4 range of the MRC scale. The
remaining 10 patients had muscles of normal bulk
and strength. Calcium channelopathies are deter-
mined by point mutations on the gene encoding for
the voltage-gated skeletal L-type calcium channel
protein on chromosome 1q (Ptacek LJ et al. 1994).

Potential sodium channelopathy: ten patients
with the clinical diagnosis of sodium channelopathy
were studied (7 males, 3 females; age range: 14-60
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years; mean age: 18.3+12.8) (Davies NP et al,
2000, Ebers GC 1991, Fontaine B et al 1990,
Heinemann SH 1992, Lehmann-Horn F et al, 1987,
McClatchey Al et al, 1992, Ptacek LJ et al, 1991,
1992, 1994; Rojas CV et al, 1991; Sansone et al,
1994; Stuhmer W et al, 1989). Of these 6 patients
had episodes typically exacerbated by cold expo-
sure. The episodes were characterized by paramy-
otonia and less often by episodes of weakness. The
paramyotonic phenomenon was most pronounced in
the facial district and in the hands compared to
other body parts. The eyes were frequently affected.
Repeated exercise worsened the contracture so that
relaxation was increasingly impaired. The clinical
diagnosis of paramyotonia was made in these
patients. Four patients fulfilled the clinical criteria
of a hyperkalemic periodic paralysis because serum
potassium levels were above normal range during
episodes of sudden weakness, typically triggered by
exercise and fasting. Sodium channelopathies are
determined by point mutations on the skeletal volt-
age-gated Na channel (Navl.4) on chromosome
179.

Potential chloride channelopathies: twenty
patients fulfilling the diagnosis of myotonia con-
genita were studied (14 males, 6 females; age
range: 30-58 years; mean age: 34.5+6.8) (Becker
PE 1977, Koch MC et al, 1992, Fahlke C et al,
1997, Jentsch TJ 1994, Steinmeyer K et al, 1994,
Wagner S et al, 1998; Wu FF et al, 2001). In 12
an autosomal dominant transmission was found.
Symptom at onset was myotonia, typically present
in the hands rather than on the face, exacerbated by
cold. Repeated exercise resolved myotonia (warm-
up phenomenon). In 4 patients there was associat-
ed proximal and distal weakness and in 2 patients
myotonia was particularly painful. Dominant and
recessive myotonia congenita are determined by
point mutations on the skeletal muscle channel
gene on chromosome 7q.

Potential potassium channelopathies: four
patients with episodes of sudden muscle weakness
associated with severe cardiac arrhythmias and
peculiar facial and skeletal abnormalities were
classified as affected by Andersen’ syndrome
(Andersen ED et al, 1971; Tawil et al, 1994;
Sansone et al, 1997, Canun S et al, 1999, Plaster
NM et al, 2001, Tristani-Firouzi M et al, 2002).

Potential myotonic dystrophies: ten patients with
autosomal dominant inheritance of muscle weak-
ness, myotonia and cataracts were diagnosed as
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having myotonic dystrophy type 1 (5 males, 5
females; age range 19-45; mean age 43.2+9.1).
Symptoms at onset were grip myotonia for 7
patients and distal hand weakness for 3 patients.
Muscle weakness and atrophy were typically distal
at onset. Multisystem involvement and specifically
cardiac arrhythmias were present in 8 of 10
patients. Myotonic dystrophy type 1 is determined
by the well-known large CTG repeat expansion
(>50 repeats) on chromosome 19q.

Ten patients with autosomal dominant inheri-
tance of predominantly proximal muscle weakness,
cataracts and myotonia (4 males, 6 females; age
range 29-65; mean age 48.6+5) with a normal size
CTG expansion on the DMPK gene were diagnosed
as having myotonic dystrophy type 2. None of the
patients complained of symptoms attributable to
cardiac involvement and no cardiac abnormalities
were found on EKG. Myotonic dystrophy type 2 or
proximal myotonic myopathy is determined by a
CCTG expansion on chromosome 3¢21.

Quantitation of muscle strength

Manual and isometric dynamometric muscle
strength assessment: all subjects were tested man-
ually for muscle strength using the 5-point MRC
scale (Medical Research Council. 1976) and using
an isometric dynamometer according to previously
standardized protocols (Sansone et al. 2000).

Quantitation of myotonia: myotonia is quantified
according to subjective self-assessment scales of
severity, timed functional tests, relaxation time
after maximum voluntary contraction and EMG
recordings of relaxation time according to previ-
ously standardized protocols (Sansone et al 2000).

Muscle biopsy: muscle biopsy was performed on
the right vastus lateralis or on on the left biceps
brachi undel local anaesthesia with the consent of
the patients. Cryostat sections (10 um thick) were
processed for histochemical analysis as previously
described (Dubowitz 1985). A battery of histologi-
cal and histochemical reactions was performed
(hematoxylin and eosin, modified Gomori
trichrome, ATPase pH 9.4, 4.6 and 4.3, nicoti-
namide nucleotide deydrogenase (NADH), succinic
dehydrogenase (SDH), periodic acid Schiff (PAS),
phosphorylase, acid phosphatase and oil red O.

Cell cultures
Cell cultures were prepared as previously
described (Meola G 1991) from muscle biopsies



original paper

BN ) v ‘

Figure 7. Tubular aggregates in Andersen syndrome (electron
microscopy).

obtained from patients with congenital and adult
forms of myotonic dystrophy types 1 and 2 to study
the differentiation and replicative capacity of
mutant DM1 and DM2 myoblasts in culture under
different conditions.

Results

The results of the diagnostic protocol applied and
in particular of the muscle biopsy results were con-
fronted with the expected results solely based on
the clinical diagnosis and with the results of genet-
ic studies.

On the basis of clinical information we classified
the patients as potential sodium, calcium, chloride
or potassium channelopathies. We also classified
patients with myotonic dystrophy of yet undeter-

Figure 6. A) Vacuolar myopathy; B) vacuolar myopathy; C) tubu- mined genetic background as potential type 1 and
lar aggregates; D) tubular aggregates. .
type 2 myotonic dystrophy.
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Table 1. Summary of the clinical, muscle biopsy and genetic findings of our patients with calcium, sodium, potassium and chloride
channelopathies and of our patients with myotonic dystrophy types 1 and 2 (potential chloride channelopathies).

CLINICAL FEATURES

MUSCLE BIOPSY FINDINGS GENETIC RESULTS

CALCIUM-CHANNELOPATHY
(hypokalemic periodic paralysis type 1)

age at onset: 2 decade
triggers: CHO, exercise
permanent limb-girdle myopathy
no myotonia

SODIUM CHANNELOPATHY
(hyperkalemic periodic paralysis
hypokalemic periodic paralysis type 2)

age at onset: 1+ decade
triggers: fasting, rest after exercise
myotonia: face > hands > limbs

CHLORIDE CHANNELOPATHY
(myotonia congenita)

age at onset: 1+ decade
triggers: cold temperature
myotonia: hands > limbs > face

POTASSIUM CHANNELOPATHY
(Andersen syndrome)

age at onset: 1+ decade

triggers: CHO, exercise

no myotonia

severe cardiac arrhythmias

typical facial and skeletal features

POTENTIAL CHANNELOPATHIES
Myotonic dystrophy type 1 age at onset: birth-2"

predominantly distal muscle weakness
myotonia: grip, percussion, tongue
posterior lens iridescent cataracts
multisystem involvement

age at onset: 2-5"

predominantly proximal muscle weakness
myotonia: grip, percussion, tongue
posterior lens iridescent cataracts
multisystem involvement

Myotonic dystrophy type 2

vacuolar myopathy arg-528-his; chromosome 1q .

(Patient P1, Fig. 1)

tubular aggregates gly-1306-glu; chromosome 17q

(Patient P2, Fig. 2)

type IIB fiber deficiency arg-317-glu; chromosome 7¢

(patient P3, Fig. 3)

tubular aggregates gly-300-val; chromosome 17q

(patient P4, Fig. 4)

preferential type 1 atrophy (CTG)n > 50 repeats

chromosome 19q

preferential type 2 atrophy 11000>(CCTG)n>75 repeats

chromosome 3q

After careful analysis of muscle biopsy we were
able to outline the specific biopsy findings which
characterize each channelopathy (Table 1).

In general, we demonstrate that sodium chan-
nelopathies are characterized by a normal mor-
phology at trichrome Gomori and by subsarcolem-
mal areas, positively stained by NADH-TR (tubular
aggregates) (Figures 6¢ and 6d). This helps in the
differential diagnosis of hypokalemic periodic
paralysis (HypoPP) types 1 (calcium channelopa-
thy, chromosome 1) and types 2 (sodium chan-
nelopathy, chromosome 17) (Jurkat-Rott K et al
2000). In fact, HypoPP type 1, caused by a calci-
um gene mutation on chromosome 1q is typically
associated with a vacuolar myopathy without tubu-
lar aggregates (Figures 6a and 6b). This vacuolar
myopathy is represented by the presence of vac-
uoles in the middle of the fiber morphologically, or
affecting only one type of fibers (type II) by histo-
chemical staining. These are more typically present
in the sodium channelopathies (Figures 6¢ and 6d)
and in Andersen syndrome (Figure 7) (Sternberg D
et al 2001).

Chloride channelopathies are also typically char-
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acterized by the absence (Figure 8c) or deficiency
of type 2B fibers (Figure 8d) and this helps in the
differential diagnosis with other myotonic syn-
dromes, i.e. the myotonic dystrophies (Figures 9c
and 9d).

Myotonic dystrophy type 1 is characterized by
increased variability in fiber size, increased central
nuclei, nuclear clumps and preferential type 1 atro-
phy (Figures 9a, 9b, 9c). Similar abnormalities but
with no preferential type 1 atrophy have been
described in myotonic dystrophy type 2 (Figure 9d).
Our results confirm that myotonic dystrophy type 1
is characterized by preferential type 1 atrophy. We
demonstrate that myotonic dystrophy type 2 is
instead characterized by preferential type 2 atro-
phy (Figures 9¢c and 9d).

Conclusions

Our results demonstrate that although the diagno-
sis of the known and of the potential skeletal muscle
channelopathies is ultimately a genetic one
(Lehmann-Horn F et al 1995, 1999; Kleopa KA et
al 2002), muscle biopsy may be a mandatory diag-
nostic tool in the correct identification of the chan-
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Figure 8: a) Note hypertrophy of some fibers (EE x 40); b)
Normal fiber type mosaicism of the biceps brachii at pH 9.4
ATPase (x 10); c) Note absence of type 2b fibers at pH 4.6 (x
10); d) Deficiency of type lIb fibers at pH 4.6 ATPase (x 40).
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Figure 9. A) DM1 morphology (TGx%20): note fiber type variabil-
ity, nuclear clumps; B) DM1: internal nuclei and nuclear clumps
(*) (EE, x 20); C) Preferential type 1 fiber atrophy in myotonic
dystrophy type 1(ATPase 4.3, x 4); D) Preferential type 2 fiber
atrophy in myotonic dystrophy type 2 (ATPase 9.4, x 10).
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nel involved. This is particularly so when considering
the time and cost of techniques such as linkage
analysis, southern blot, PCR and mutational analysis
especially for large size genes. In general the possi-
bility to perform muscle biopsy rather than previous
tests like potassium or glucose and insulin chal-
lenges used for the diagnosis of hypo- and hyper-
kalemic periodic paralysis is a great advantage
because of the safety of the muscle biopsy procedure
compared to the risk of secondary cardiac arrhyth-
mias induced by variations in serum potassium lev-
els. This applies particularly to the Andersen syn-
drome in which cardiac arrhythmias are a major
concern and challenges should be avoided in any
case.

Recognizing that hypokalemic periodic paralysis
is more likely due to a sodium rather than a calci-
um channel on the basis of clinical and biopsy
results has obvious clinical implications for the
genetician who may direct time and money towards
a more specific genetic analysis. It has also thera-
peutic implications because type 2 hypokalemic
periodic paralysis is less likely to respond to aceta-
zolamide or dichlorofenamide.

The importance of muscle biopsy studies in the
channelopathies is also clearly demonstrated in
patients with myotonia of unknown cause. This is
especially true for uninformative families in which a
dominant trait is difficult or impossible to deter-
mine. In fact, there may be patients with myotonic
dystrophy type 2 or with myotonia congenita in
whom myotonia may be the only clinical manifesta-
tion. In these patients the finding of preferential
type 2 atrophy in the presence of normal distribu-
tion and size of type 2B fibers directs towards the
diagnosis of myotonic dystrophy type 2 whereas the
absence or deficiency of type 2B fibers is highly
suggestive of myotonia congenita.

The results of our study also emphasize that mus-
cle biopsy specimens from patients with myotonic
dystrophy types 1 and 2 (Moxley et al, 2002,
Mankodi et al, 2002) may be used to set up muscle
cultures to investigate into the mechanisms involved
in the pathogenesis of these disorders. Using mus-
cle cell cultures it has been possible to recognize
that myotonia in these disorders is determined by
loss of the muscle-specific chloride channel due to
misregulated alternative splicing (Charlet-B. N et
al. 2002). For this reason the myotonic dystrophies
have been recently considered potential channelo-
pathies.
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Muscle cell cultures may be considered as inter-
esting models to study RNA processing and abnor-
mal regulation of alternative splicing thus contribut-
ing to the understanding of the pathogenesis of DM1
and DM2 (Tapscott SJ et al, 2001). Previous stud-
ies have demonstrated that muscle cell cultures may
be an in vitro model to study the effects of expand-
ed CUG or CCUG RNAs on muscle and therefore to
extrapolate these findings to other tissues. Recently
investigators have shown that RNAs produced from
mutant DM1 or DM2 alleles are retained in the
nucleus in one or more discrete foci (Taneja KL, et
al, 1995; Liquori CL et al, 2001). The expanded
CUG and CCUG repeats retained in the nuclei and
possibly additional components of the mutant
DMPK and ZNF9 mRNAs inhibit myoblast differen-
tiation and this may be investigated in vitro using
this model (Khajavi M et al. 2001; Amack JD et al,
1999; Amack JD et al, 2001, Fardaei M et al,
2002). In addition to these observations are other
previous studies showing that in vitro differentiation
of congenital DM1 myoblasts is markedly impaired
and that these cells undergo premature senescence
(Furling D et al, 2001).

In conclusion, although the diagnosis of the chan-
nelopathies is ultimately a genetic one, muscle biop-
sy is an essential tool to direct the genetic approach
towards the specific potential channel involved in
the disease process. In addition, muscle cell cultures
obtained from the biopsies of patients with myoton-
ic dystrophy types 1 and 2 are very interesting mod-
els to study the possible toxic gain-of-function by
the mutant RNA in the nuclear foci. Some manifes-
tations of DM1 and DM2 like myotonia, cardiac
arrhythmias, insulin resistance and cataracts like
other aspects of the multisystem involvement of
these disorders may result from transinterference
with  RNA processing. Understanding the exact
mechanisms to overcome the toxicity of mutant
RNA has obvious clinical and therapeutic implica-
tions.

The hereditary skeletal muscle channelopathies
described here represent a small part of the rapid-
ly expanding group of neurological channelo-
pathies. The skeletal muscle channelopathies have
served as paradigms for the understanding of other
ion channel disorders, partly because of the avail-
ability of the tissues, which is not the case for the
central nervous system channelopathies (Ptacek LJ
1997). Identifying the genetic locus of these dis-
eases is important in the short-term for genetic



counselling, but in the long-term is should lead to
therapies, tailored to the particular dysfunctional
channel.

This is an area yet to be explored and functional
expression studies by cellular electrophysiology
could result in improved mechanisms that underlie
neurological channelopathies.
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