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Cell death by apoptosis requires a precise plan of destruc-
tion of DNA and proteins. In this paper, we review the current
knowledge on the different DNA-degrading enzymes which
are activated in apoptotic cells. The activation of DNases by
upstream proteases is also discussed.
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A balance between cell proliferation and cell
death strictly regulates tissue homeostasis. Cell
death occurs essentially by two distinct pathways:
necrosis and apoptosis. Necrosis, which is caused by
non-physiological conditions in the cellular environ-
ment, is a passive process characterized by cell
swelling, rapid disruption of membrane, random
degradation of DNA, organelle damage, dilatation
of endoplasmic reticulum and cytoplasm vacuoliza-
tion. In necrotic cells, membrane integrity is lost,
leading to the release of cellular content, with
resulting inflammation of surrounding tissues.

The definition of apoptosis was first based on a
distinct sequence of morphologic features, described
in 1972 by Kerr, Wyllie and Currie. Apoptosis occurs
during the embryonic development, in tissue
turnover, metamorphosis and atrophy of tissues and
organs and during sexual differentiation. In other
words, it is involved in many stages of tissue devel-
opment, providing a way of discarding redundant cel-
lular material (McConkey et al. 1996; Jacobson et
al. 1997; Vaux and Korsmeyer 1999). Dysregulation
of apoptosis is implicated in the pathogenesis of
many human diseases, including neurodegenerative
(Honig and Rosenberg 2000) and autoimmune
(Rathmell and Thompson 2002) disorders as well as
oncogenesis (Lowe and Lin 2000; Tamm et al.
2001; Reed 2001). Apoptosis is an active, energy-
dependent process that is characterized by a series
of typical morphological events, such as membrane
blebbing, condensation of nuclear chromatin into
sharply delineated masses that become marginated
against the nuclear membranes, cell shrinkage, inter-
nucleosomal DNA fragmentation and protein cleav-
age (Bratton and Cohen 2001; Bonanno et al.,
2002). Among the components of the apoptotic
machinery, some factors proved to be evolutionarily
conserved from nematodes to mammals (Chinnaiyan
1999; Cain et al. 2002).
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Figure 1. Time-course of DNA degradation in apoptotic cells. Step 1: in nuclei showing chromatin condensation as an incipient sign
of apoptosis, DNA is fragmented into high molecular weight fragments (50-300 kb) detectable by pulsed-field gel electrophoresis.
Lanes 1,4: control Hela cells; lanes 2 and 3: HelLa cells treated with 100 pM etoposide for 3 h, and further incubated in fresh medi-
um for 3 h or 24 h, respectively. Step 2: in nuclei showing chromatin fragmentation, internucleosomal DNA degradation occurs, lead-
ing to the production of oligonuclesome-sized DNA molecules. A typical DNA ladder is detectable by conventional agarose gel elec-
trophoresis. Lane 1: control Hela cells; lane 2: markers; lanes 3 and 4: Hela cells treated with 100 pM etoposide for 3 h, and further
incubated in fresh medium for 3 h or 24 h, respectively. Chromatin staining and DNA analysis were performed according to Torriglia et

al. (1999).

DNA degradation

Loss of DNA integrity is a common feature of cell
death. As an early event during apoptosis, fragmen-
tation of DNA into high molecular weight (HMW)
molecules, ranging from 300 to 50 kb, has been
described and monitored by pulsed-field gel elec-
trophoresis (Schwartz and Cantor 1984).
Following a precise kinetics of DNA degradation,
HMW fragments are further degraded to oligonu-
cleosome-sized DNA molecules. The cleavage of
DNA at the internucleosomal region generates
DNA fragments with lengths corresponding to mul-
tiples of 180 bp, giving rise to a typical “‘ladder”
when analyzed by conventional gel electrophoresis
(Wyllie 1980; Wyllie et al. 1980). A further conse-
quence of DNA fragmentation is the presence of
free DNA termini, which can be visualized by the
TdT-mediated-dUTP nick end labeling (TUNEL)
procedure (Gavrieli et al. 1992). The kinetics of
DNA degradation is shown in Figure 1.
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Internucleosomal DNA fragmentation, a typical
hallmark of apoptotic cells (with some exceptions),
has been demonstrated to parallel the well-charac-
terized apoptotic morphology in a wide range of sit-
uations and cell types (King and Cidlowski 1995).
In this respect, the search of DNases, i.e. enzymes
cleaving DNA, became a major goal in the charac-
terisation of the apoptotic pathway. This explains
the enormous body of literature between 1990 and
1997 concerning endonucleases activation in apop-
tosis (for reviews, see Montague and Cidlowski
1996; Walker and Sikorska 1997; Counis and
Torriglia 2000; Zhang and Xu 2002).

In this paper we will review the current knowl-
edge on the DNases that are activated during apop-
tosis. A comprehensive review of the literature
prompted us to classify these enzymes in three
groups, according to their activity dependence
(Counis and Torriglia 2000): i) Ca*/Mg**-depend-
ent endonucleases; ii) Mg*-dependent DNases; iii)



acid endonucleases or cation-independent DNases.
This classification was chosen because many of
these enzymes have not been fully characterized
and a structural or genetic analysis have not been
achieved.

Ca*”/Mg*-dependent endonucleases

Among the different Ca*/Mg**-dependent
DNases, DNase I is the best characterized (Peitsch
et al. 1993). It has been shown that isolated nuclei
of COS cells having little endogenous endonuclease
activity, acquire the capability to degrade their
DNA into multiples of 180 bp fragments upon
transfection of the cells with DNase I cDNA
(Polzar et al. 1993). Another DNase implicated in
apoptosis is DNase g, which has been characterized
at the molecular level (Shiokawa and Tanuma
1998a; 2001). The activity of other nucleases was
also investigated; for instance, a 18 kDa nuclease,
homologous to cyclophilin, has been isolated from
rat thymus (Gaido and Cidlowski 1991; Montague
et al. 1994; Montague and Cidlowski 1996). Wyllie
and coworkers have isolated from thymocytes a
protein of 110-130 kDa, which is closely related to
one subunit of topoisomerase Il (Arends et al.
1993). Finally, a caspase 3-activated DNase
belongs to this category, i.e. CPAN, the human
homologue of CAD (Halenbeck et al. 1998). The
human Ca*/Mg**-dependent DNAS1L3, a nuclear
enzyme which is able to cleave DNA into large
molecular weight and oligonucleosomal fragments
(Boulares et al. 1999), proved to be regulated in
vitro and in vivo by poly(ADP-ribosylation)
(Yakovlev et al. 1999; 2000). In this way, the
release of DNAS1L3 from poly(ADP-ribosylation)-
induced inhibition allows it to mediate DNA frag-
mentation and cell death. Boulares et al. (2001;
2002a,b) demonstrated that cells lacking DFF45,
an apoptotic DNA-fragmentation factor, as well as
PARP-deficient cells are less sensitive to apoptosis
induced by TNF. Interestingly, human osteosarcoma
cells depleted of DNAS1L3 do not activate etopo-
side-induced apoptosis. This property was recovered
after transfection with exogenous DNAS1L3, thus
suggesting that loss of expression or inactivation of
endonucleases might contribute to reduce cell sen-
sitivity to drug-induced apoptosis.

Mg*-dependent DNases
Mg**-dependent, Ca’*-independent DNases were
characterized in CD34* cells (Kawabata et al.
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1993; Anzai et al. 1995). The best-studied enzyme
of this class is CAD, which is Ca/Mg-dependent in
human cells but Mg-dependent in mouse. CAD is
the first example of a caspase-activated DNase.
Enari et al. (1998) purified CAD from mouse lym-
phoid cells as a protein of 40 kDa. During the
purification process, it was noted that the extracts
from non-apoptotic cells contained a factor that
inhibits the CAD. The factor was purified and des-
ignated as ICAD (inhibitor of CAD), which is a sub-
strate of caspase 3 (Enari et al. 1998), thus indi-
cating that the activation of endonucleases is down-
stream caspases. The same factors were purified
independently by Liu (called DFF) and Halenbeck
(called CPAN) from HelLa and Jurkat cells, respec-
tively (Halenbeck et al. 1998; Liu et al. 1998).
DFF is composed of two subunits of 45- and 40-
kDa (DFF-45 and DFF-40). Caspase 3 cleaves
DFF-45 and generates a DNase activity, so that
DFF-45 is the equivalent of ICAD and DFF-40 is
the equivalent of CAD. As well as inhibiting CAD,
ICAD seems to have chaperone properties in regard
of CAD, since in its absence no active CAD can be
produced (Sakahira et al. 2000). CAD and ICAD
are expressed in most tissues and cell lines under-
going rapid DNA fragmentation after apoptotic
stimuli (Mukae et al. 1998). In contrast, some cell
types like fibroblasts and nerve cell lines have low
levels of these proteins. Zhang et al. (1999) showed
in thymocytes from ICAD-null mice no DNA frag-
ments upon exposure to apoptotic stimuli, thus
demonstrating that CAD/ICAD system regulates
DNA fragmentation.

Acid endonucleases or cation-independent DNases

Eastman's group was the first to implicate acid
DNases in DNA fragmentation during apoptosis
(Eastman and Barry 1992; Barry and Eastman
1993; Barry et al. 1993). Other authors showed
that intracellular acidification induces DNA cleav-
age that may be catalyzed by these types of DNases
(Gottlieb et al. 1995; 1996; Collins et al. 1996;
Leaseholder et al. 1996; Furlong et al. 1997).
Different groups have cloned a DNase II (Baker et
al. 1998; Krieser and Eastman 1998; 2000;
Shiokawa and Tanuma 1998b; Wang et al. 1998;
Yasuda et al. 1998; Lyon et al. 2000) that seems
to be a secreted enzyme (Wang et al. 1998). Recent
work using knock-out mice for DNase II indicates
that this enzyme is important for housekeeping dur-
ing erythroid cell differentiation and DNA clear-
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Figure 2. Conversion of LEl (Leukocyte Elastase Inhibitor) into L-DNase Il in apoptotic cells. Total extracts from long term-cultured
Hela cells (i.e. cells grown in the same medium for 8 days) were analyzed by western blot for PARP-1 cleavage and for L-DNasell acti-
vation. Lane 1: control cells; lane 2: attached cells recovered after 8 days in culture; lane 3: floating, apoptotic cells recovered after
8 days in culture. Apoptotic cells (lane 3) are characterized by the presence of PARP-1 cleavage product of 89 kDa, and of the 27 kDa
L-DNase Il. Western blot analysis was performed according to Torriglia et al. (1999). Right panel shows the features of LEI and L-DNase
Il, and the possible mechanisms regulating the conversion of LEIl into L-DNase II.

ance, but not for cellular apoptosis itself (Kawane
et al. 2001; Krieser et al. 2002). In 1999, an acid
nuclease, activated during apoptosis in HelLa cells,
was found (Famulski et al. 1999). This nuclease is
active in acetate buffer and insensitive to Zn**, and
its activation is caspase-independent. In our labo-
ratory, we have demonstrated the involvement of
DNase II in chick lens cell terminal differentiation
(Torriglia et al. 1995), which is characterized by
the disappearance of nuclei from lens fiber cells.
The process of nuclear degradation shares many
features with nuclei of apoptotic cells (Counis et al.
1998), even if DNA fragments are not a good sub-
strate for TUNEL reaction (Chaudun et al. 1994).
Since DNase II cuts DNA and produces 3'P termi-
ni, we evaluated the involvement of this enzyme in
the apoptotic pathway and we showed that anti-
bodies directed against DNase II inhibit DNA
degradation in isolated lens cell nuclei.
Remarkably, DNase II is located in the cytoplasm
of undifferentiated cells and only becomes nuclear
in cells undergoing differentiation.

L-DNase Il

Recently, we have characterized a protein with a
DNase IT activity, which is different from the above
described DNase Il (Torriglia et al. 1998). In vitro
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this DNase, called L-DNase 11, has the properties of
a DNase II, with optimal activity at pH 5.75. In
contrast to the other DNase II described above, it
keeps the 50% of its activity at pH 7.4 (Counis et
al. 1998). L-DNase II is derived from LEI
(Leukocyte Elastase Inhibitor) by an acid-depend-
ent post-translational modification or by digestion
with elastase. In vitro experiments, using purified
recombinant LEI, showed that the native form has
no activity on purified nuclei whereas its post-
translationally activated form induces picnosis and
DNA degradation in isolated nuclei. The conversion
of LEI into L-DNase II is promoted by intracellu-
lar acidification (Altairac et al. 2003a). In differ-
ent cell lines, we showed an increased expression
and a nuclear translocation of L-DNase II during
apoptosis (Torriglia et al. 1999; Belmokhtar et al.
2000; Gorrini et al. 2003). In Figure 2, western
blot analysis of the conversion of LEI into L-DNase
in apoptotic cells is reported. A typical example of
intracellular redistribution of L-DNase II during
apoptosis is shown in Figure 3.

The activation of DNases during apoptosis

The apoptotic sequence proceeds according to a
precise plan of destruction of DNA and proteins. As
above reviewed, DNA can be degraded by many
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DNases/endonucleases, possibly following different
strategies, depending on the cell type and the nature
of the stimulus. The activity of DNA-degrading
enzymes is in turn regulated by proteases.
Consequently, CAD is activated after cleavage of
ICAD, its inhibitor, by caspase 3 (Enari et al.
1998). If we assume the other endonucleases acti-
vated during apoptosis behave in the same way, a
class of non caspase-proteases should exist and
activate, directly or not, other endonucleases. This
seems to be the case, since other proteases have
been implicated in apoptosis.

The proteases activated during apoptosis

Caspases

PARP-1, the best marker of proteolysis during
apoptosis (Scovassi and Poirier, 1999; Soldani and
Scovassi, 2002), proved to be cleaved in cells treat-
ed with different drugs (Kaufmann et al. 1993;
Soldani et al., 2001), by a protease resembling ICE
(prICE; Lazebnik et al. 1994). This protease was
further identified as caspase 3 (Nicholson et al.
1995; Tewari et al. 1995; Casciola-Rosen et al.
1996). At least 14 mammalian caspases have been
described (Chang and Yang 2000). Caspases exist in
the cell as pro-caspases, whose activation requires a
proteolytic event and occurs in a cascade-like way. In
respect to the time-course of their activity during the
apoptotic pathway, they can act as initiator or effec-
tor caspases. Once activated, the initiator caspases

anti-L-DNase Il
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Figure 3. Translocation of L-DNase Il from the
cytoplasm to the nucleus of apoptotic HelLa
cells. In control cells (C), L-DNase Il shows
an extra-nuclear localization. In long term-
cultured cells, L-DNase Il immunofluores-
cence is visible in the nuclear compartment.
Immunofluorescence was performed accord-
ing to Torriglia et al. (1999).

process downstream caspases to promote the cleav-
age of a number of substrates (Salvesen and Dixit
1997; Thornberry and Lazebnik 1998; Chang and
Yang 2000; Cain et al. 2002). The use of inhibitors
and gene knock-out strategy revealed that caspases
have overlapping roles and that their function is so
essential that they are redundant within the cell.
Many targets of caspases have been described,
including structural proteins, enzymes and cell cycle
factors. That caspase inhibition does not abolish cell
demise, suggests the existence of a caspase-inde-
pendent apoptotic pathway (Leist and Jaattela
2001). In this respect, a number of alternative pro-
teases have been described to be active during apop-
tosis, as reported below.

Calpains

Calpains are non-lysosomal Ca**-dependent cys-
teine proteases structurally unrelated to caspases.
Ubiquitous cytoplasmic calpains exist as two iso-
forms, p-calpain and m-calpain, and are constitu-
tively expressed. Their possible involvement in apop-
tosis was first suggested by Sarin et al. (1993) and
Robert-Lewis et al. (1993) and has been reported
for several cells, even if little is known about their
exact role. By the use of calpain inhibitor acetyl-
calpastatin 27-peptide, it has been clearly demon-
strated that calpains are required after a number of
apoptogenic stimuli (Sarin et al. 1994; Squier et
al. 1994; 1999; Squier and Cohen 1997), including
during calcium-dependent apoptosis (Ravid et al.
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1994; Gil Parrado et al. 2002). Interestingly, the
overexpression of calpastatin gene reduces dys-
trophic pathology, thus suggesting that calpain inhi-
bition might provide a therapeutic strategy for this
disorder (Spencer and Mellgren 2002), as well as
for Alzheimer (Di Rosa et al. 2002) and Hun-
tington (Goffredo et al. 2002) diseases. Calpain
substrates are cytoskeleton proteins including
fodrin, membrane receptors and transporters, and
steroid receptors (Chan and Mattson 1999). It is
noteworthy that Bcl-xL is converted by calpain
from the anti-apoptotic into the pro-apoptotic form
(Nakagawa and Yuan 2000) and that Bid cleavage
promotes cytochrome c release (Chen et al. 2001).
By proteolytic degradation, calpains also contribute
to the regulation of P53 (Pariat et al. 1997) and c-
Myc (Small et al. 2002) levels during apoptosis.
Remarkably, a crosstalk between calpains and cas-
pases during apoptosis was postulated. In fact, cal-
pain is implicated in caspase-7 activation during B
cell clonal deletion (Ruiz-Vela et al. 1999) and is
responsible for cleaving pro-caspase 12 to generate
active caspase-12 (Nakagawa and Yuan 2000;
Neumar et al. 2003). To date no relationship has
been found between the activation of calpains and a
particular endonuclease.

Cathepsins

The cathepsin protease family includes cysteine,
aspartate and serine proteases (Chapman et al.
1997). Cysteine cathepsins L and B, together with
the aspartic protease cathepsin D, are the most
abundant lysosomal proteases and have been clear-
ly correlated with apoptosis (Roberts et al. 1999;
Tsukuba et al. 2000; Uchiyama 2001). Genetic evi-
dence for the role of cysteine cathepsins in apopto-
sis has been provided by studies showing resistance
against TNF-induced apoptosis in mice lacking
cathepsin B (Roberts et al. 1999; Guicciardi et al.
2000; Felbor et al. 2002), and massive death in the
brains of mice that lack cathepsin inhibitor cystatin
B (Lieuallen et al. 2001) and in cells treated with
cathepsin inhibitors (Castino et al. 2002).
Cathepsins are translocated from lysosomes to the
cytosol and/or to the nucleus before the appearance
of apoptotic morphological changes. Some of them
are involved in caspase-dependent apoptosis (Turk
et al. 2000; Roberg et al. 2002) and cleave crucial
factors, such as Bid (Stoka et al. 2001) and Brm
(Biggs et al. 2001).
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Granzymes

Granzymes, a family of serine proteases, are
packaged in the granules of CTLs and natural killer
cells (Trambas and Griffiths 2003). Granzyme B,
the most powerful pro-apoptotic member of the
family, after intracellular delivery by perforin
induces a proteolytic cascade by acting as an apical
caspase, thus processing a number of key caspases
(Atkinson et al. 1998; Barry et al. 2000).
Granzyme B is also able to cleave and activate
directly the pro-apoptotic factor Bid (Pinkoski et
al. 2001; Sutton et al. 2000) and other proteins in
a caspase-independent death pathway. In fact, in
the presence of caspase inhibitors, granzyme B
might cause cell death independently of the caspas-
es, even with a slower kinetics. Death induced by
granzyme A is associated with DNA single-strand
breaks created by a granzyme A-activated DNase
(Beresford et al. 2001; Fan et al. 2003).

Serine proteases

Other serine proteases different from granzymes
have been described to play a role in cell death:
Omi/Htra2, a mitochondrial protease that upon
induction of apoptosis is released to the cytoplasm,
is involved in both caspase-dependent and -inde-
pendent apoptosis (Hegde et al. 2002; Cilenti et al.
2003; Jin et al. 2003). The 24 kDa apoptotic pro-
tease (AP24) is a serine protease with elastase-like
activity that is activated during TNFo- or UV light-
induced apoptosis and stimulates in vitro internu-
cleosomal DNA fragmentation in isolated nuclei
(Wright et al. 1997; 1998a; 1998b). We recently
described the interaction between AP24 and
LEI/L-DNase II (Altairac et al. 2003b) and
showed that L-DNase II is activated in U937 cells
treated with TNFq, i.e. in an apoptotic model
recruiting AP24. Remarkably, we found that L-
DNase II activity is suppressed when apoptosis is
attenuated by an AP24 inhibitor, carbobenzoxy-
Ala-Ala-borophe (DK120).

DNases and the control of apoptosis

DNA degradation during apoptosis has often been
considered a housekeeping task in the cell. However,
recent findings show that DNA degradation can
also control apoptosis. Parrish et al. (2001), while
searching for new cell death-inducing factors that
are released from cells primed to die, purified
endoG, a previously described mitochondrial
enzyme with a proposed role in the replication of
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mitochondrial DNA. These authors suggested that
endoG not only participates in the deconstruction
of apoptotic cells, but can also contribute to the
actual killing process. These authors identified the
genes that, when mutated, protect cells from apop-
tosis. Among them, cps-6, (the nematode counter-
part of endoG) not only promotes DNA degrada-
tion, but also contributes to cell killing. Its loss
slightly increased cell survival in many genetic
backgrounds of C. elegans. These results suggest
that DNA degradation and therefore endonucleases
have a role in the control of apoptosis, perhaps
because of the importance of their housekeeping
function.

Conclusions

Over the two decades following the pioneering
work of Kerr et al. (1972), it was generally accept-
ed that different apoptotic stimuli activate a com-
mon apoptotic pathway. This idea was supported
essentially by the fact that the apoptotic process is
highly conserved from the morphological point of
view, and because of the discovery of caspases as
common executioners of apoptosis. More recently,
the discovery of many DNases involved in DNA
degradation in different apoptotic systems, and of
proteases other than caspases, have shown that dis-
tinct molecular pathways lead to apoptosis. In this
respect, it is now widely accepted that caspase-
dependent and -independent pathways exist, leading
to alternative execution systems. Factors involved in

Review

Mitochondria

\

DNase
release

Figure 4. Cross-talk between proteases and DNases
during apoptosis. Active proteases, including cas-
pases, calpains, cathepsins, serine proteases, can
promote the activation of DNases in different ways,
i.e. by cleaving a DNase precursor (LEl/IL-DNase Il)
or a DNase inhibitor (CAD/ICAD; PARP-1/NAS1L3)
or by releasing DNases from mitochondria (endoG).

caspase-independent apoptosis are under charac-
terization (Nicotera 2001; Mathiasen and Jaattela
2002; Jaattela and Tschopp 2003). To date, a pre-
cise link between endonucleases and the non cas-
pase-proteases has not been stated, except for
LEI/L-DNase II, that may be activated by AP24, a
serine protease.

From these facts, an intriguing question arises:
why would a cell need more than one nuclease to
digest its DNA? One hint might come from the dif-
ferent ways of regulation of such enzymes (Figure
4). In living cells, CAD is sequestered in an inactive
complex, in a form bound to its inhibitory subunit
(known as ICAD or DFF45). By contrast, endoG is
activated by a change in its subcellular localization
and L-DNase II derives from a protein which has
another function (LEI is a protease inhibitor). The
existence of redundant pathways leading to cell
death may help when caspase activation is limited
or compromised, as it might be the case, for exam-
ple, during viral infection.
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