Citometria, Universita di Pavia, Italy

i ©2004, European Journal of Histochemistry

Nitric oxide (NO) is acknowledged as a messenger molecule
in the nervous system with a pivotal role in the modulation
of the chemosensory information. It has been shown to be
present in the optic lobes of several insect species. In the
present study, we used males and females from four differ-
ent strains of the medfly Ceratitis capitata (Diptera,
Tephritidae): or; or,wp (both orange eyed); w,M360 and
w,Heraklion (both white eyed), as models to further clarify
the involvement of NO in the mutants’ visual system and dif-
ferences in its activity and localization in the sexes.
Comparison of the localization pattern of NO synthase
(NOS), through NADPH-diaphorase (NADPHd) staining, in
the optic lobes of the four strains, revealed a stronger reac-
tion intensity in the retina and in the neuropile region lami-
na than in medulla and lobula. Interestingly, the intensity of
NADPHd staining differs, at least in some strains, in the optic
lobes of the two sexes; all the areas are generally strongly
labelled in the males of the or and w,M360 strains, whereas
the w,Heraklion and or,wp mutants do not show evident sex-
dependent NADPHd staining. Taken as a whole, our data
point to NO as a likely transmitter candidate in the visual
information processes in insects, with a possible correlation
among NOS distribution, eye pigmentation and visual func-
tion in C. capitata males. Moreover, NO could influence
behavioural differences linked to vision in the two sexes.
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important signalling molecule in the nervous

system (Moncada et al., 1991; Bredt &
Snyder, 1990), not only in mammals (Bredt &
Snyder, 1990; Garthwaite, 1991; Garthwaite et al.,
1988; Snyder, 1992; Vincent & Kimura, 1992), but
also in all the vertebrate groups (Williams et al.,
1994; Briining et al., 1994; Holqvist et al., 1994;
Pisu et al.,, 2002) and in several invertebrates
(Martinez, 1995; Miller & Bicker, 1994; Kurzin et
al., 1996; Gibbs & Truman, 1996; Elphick et al.,
1996; Pisu et al., 1999).

NO is synthesized from L-arginine and molecular
oxygen by the enzyme NO-synthase (NOS) (Bredt &
Snyder, 1990), that, using as cofactor NADPH, dis-
plays NADPH diaphorase (NADPHd) activity
(Garthwaite,1991; Vincent, 1994; Johansson &
Carlberg, 1995); the formation of NO is a Ca*/
calmodulin-dependent process (Garthwaite et al.,
1988).

NOS containing neurones are present throughout
the mammalian central nervous system (CNS) and
recently a gene encoding a protein with 43%
aminoacid identity to rat neural NOS was reported
in D. melanogaster (Regulski & Tully, 1995) provid-
ing further evidence that NO is a signalling molecule
in the insect CNS (Elphick et al, 1996). In parallel
with mammalian studies, the research in inverte-
brate focused on role for NO in olfaction (Gelperin
et al.,, 1994; Muller & Bicker, 1994) and learning
and memory (Robertson et al., 1994). All these
studies suggest the high conservation of this sig-
nalling system throughout the animal kingdom
(Martinez, 1995; Eloffson et al., 1993; Ribeiro et
al.,, 1997; Salleo et al.,, 1996; Elphick et al.,,
1993a).

NO is also found at all levels of the vertebrate
visual system (Vincent & Kimura, 1992; Kalam-
karov et al., 1993) and it is thought to be implicat-
ed in the visual processes and in the visually guided
behaviour of some insects (Elphick et al., 1996;
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Bacigalupo et al., 1995; Bicker & Schmachten-
berg, 1997).

Since NO is extremely labile and NOS displays
NADPHd activity, frequently the method used to
demonstrate nitrinergic elements in the brain con-
sisted in the histochemical reaction for NADPH-
diaphorase (NADPHd; Thomas & Pearse, 1964).
The most important and attractive reason for the
interest of neuroanatomist and neurobiologist in
this technique arose when NADPHd was identified
as a marker for neuronal nitric oxide synthase
(Hope et al., 1991). Thus, the relative simple
NADPHd histochemical technique was widely used
to identify NO producing elements in the brain of
representatives of all vertebrate classes (Luebke et
al., 1992; Brilining, 1993; Panzica et al., 1994;
Alonso et al., 1995; Smeets et al., 1997; Arévalo et
al., 1995; Mufoz et al., 1996; Alonso et al., 2000).
The NADPHd staining method in invertebrate has
been validated by purification of the locust NOS
and demonstration of co-localization for both NOS
and NADPHd activities (Elphick et al., 1994).

In a previous work (Conforti et al., 1999), we
have found that NADPHd activity is present in the
optic lobes of two different strains of the medfly
Ceratitis capitata (Diptera, Tephritidae), a wild type
eye colour and a white eye mutant line. Here we
give histochemical evidence of the differences in
NADPHd activity in the optic lobes of four eye
colour mutant strains of C. capitata with the aim to
further demonstrate a functional relationship
between NOS dependent NADPHd activity in the
optic lobes and the visual activity of the medfly C.
capitata. The orange eye (or) and orange eye, white
pupa (or,wp) mutants have orange coloured eyes;
the white eye M360 (w,M360) strain presents
white-yellow eye and the white eye Heraklion
(w,Heraklion) mutant phenotype lacks eye colour
pigmentation.

In particular, we have compared the pattern of
NADPHd staining, paying attention to the possible
role of a sex-dependent NOS activity in the optic
lobes of C. capitata.

In fact, it has been previously observed that in
many insects some visually guided behaviour pat-
terns differ between the sexes (Franceschini et al.,
1981). In particular, in the blowfly Calliphora ery-
throcephala dimorphism is expressed by differences
in the shapes of analogous neurons in males and
females, as well as by the presence of some cells in
only one sex (Strausfeld, 1980). Sexual dimor-
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phisms, structural differences between the sexes,
have been described in the brains of many verte-
brate species.

Materials and Methods

Insect strains

Four adult strains of C. capitata were used: or;
or, wp (both orange eyed); w,M360; w,Heraklion
(both white eyed). White eye Heraklion is homozy-
gous for the white eye (W) allele of the white locus
(w) (Torti et al., 1994). Our experiments were car-
ried out both on males (5 specimens per strain) and
females (5 specimens per strain). The four strains
were reared in our laboratory at the same condi-
tions (25°C and 65% RH under 12 hours light-12
hours dark conditions).

Visual activities were tested by observation dur-
ing the routine manteinance and on mating behav-
iour.

Tissue preparation

The exoskeleton was dissected from the anterior
part of the puparium and from the anterior face of
the head to expose the brain and the optic lobes.
Heads were fixed with 4% paraformaldehyde in 0.1
M phosphate buffer, pH 7.35, for 2 h. After wash-
ing in the same buffer for 30 min, they were stored
in cryoprotective 25% sucrose-phosphate buffer
overnight at 4°C and then frozen in liquid nitrogen.
Serial 14 um sections were cut using a cryostat in
the frontal plane.

NADPHd histochemistry

The sections, from different mutants and sexes,
were contemporaneously incubated for 1 hour at
37°C in the dark in the following medium Lmodified
from Van Noorden and Frederiks, 1992 (Fortini &
Bonini, 2000)1: 0.1 M phosphate buffer, pH 7.35,
containing 15% (w/v) polyvinyl alcohol, 0.5 mM {-
NADPH (Sigma, MO, USA), 0.2% Triton-100 and
5 mM nitro blue tetrazolium (NBT, Sigma). After
incubation, the sections were rinsed in 0.1 M phos-
phate buffer, pH 7.35, then mounted on glycerine-
gelly and viewed/photographed with a Zeiss
Axioskop microscope.

Control preparations were stained with the
NADPH-diaphorase procedure after: (i) omission
of NADPH, (ii) omission of nitro blue tetrazolium,
(iii) replacement of NADPH with NAD. In addi-
tion, some sections were pre-incubated with 1 mM



L-NNA (Nw-nitro-L-arginine) dissolved in glicyne-
NaOH buffer, pH 8.5. L-NNA is a specific inhibitor
of NOS activity and, consequently, of NO produc-
tion. Control preparations were not stained, except
for w,M360, that showed persistent labelling in the
retina.

Evaluation of staining intensity

In order to make objective evaluations, the stain-
ing intensity of each area of the optic lobes was
determined by scanning colour photographs of sec-
tions with a colour scanner (AGFA ARCUS II) and
then using Adobe Photoshop 5.0 for computerized
image analysis. The staining intensity was expressed
as percentage black in the grey scale. All the inten-
sity values obtained from the control reaction omit-
ting NADPH were subtracted from the correspon-
dent intensity values obtained after specific
NADPHd reaction. Data are mean + S.D. of five
individuals for each stage (five sections for each
individual and fifteen measurements for each sec-
tion). No significant differences in the staining
intensity were seen among individuals. The differ-
ences between the neuropiles of the phenotypes
were analyzed by the Tukey's HSD Multiple
Comparisons test.

Results
Anatomical description of an insect brain

The head of an insect is formed from a set of
fused segmental units, whose precise number, per-
haps seven, has proved difficult to establish.
Likewise the head contains a set of segmental gan-
glia, fused to form a brain, called cerebron. This
gangliar complex can be divided into three main
areas: proto-, deuto-, and tritocerebro, each one
containing nerve centres.

About half of the entire complement of neurones
in a Dypteran insect form the optic lobes that serve
the compound eyes. In fact, large compound eyes
with a facet lens for each pixel in the optical image
are a distinctive feature of insects; the basic unit of
these compound eye is called ommatidium. Beneath
these eyes much of the brain is devoted to vision.

The first stages of vision involve point-by-point
transformation and coding of image on the retina.
This is done by neurones in the optic lobes, whose
columnar architecture of almost crystalline regu-
larity beautifully reflects their function. Signals
from the eye pass successively through three gan-
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glia: the lamina, the medulla and the lobula. In the
outer two ganglia — the lamina and the medulla —
the neurones are arranged to form columnar mod-
ules, with a set of cells repeated beneath each
ommatidium.

The first and smallest ganglion is the lamina; it
receives direct inputs from the retina, as well as
feedback from the medulla. Signals passed from the
lamina to the medulla, finally enter in the lobula.

Distribution of NOS labelling intensity in the visu-
al system of or; orwp; w,M360; w,Heraklion
mutant of C. capitata

The intensity of NADPHd labelling differs in the
optic lobes of the four phenotypes and may be sex
dependent.

w,M360 mutant. All the areas of the w,M360
optic lobes were labelled (Figure 1 a, b, ¢, d). In
particular, a strong intensity of NADPHd staining
was found in the retina and in the outer lamina,
with respect to the medulla and lobula. However,
the immunostaining was stronger in the males. In
the male (Figure 1 a, b), the labelling is associated
with distinct layers of fibers and varicosities along
the whole medulla and in the lamina. In the female
(Figure 1 ¢, d) all the areas of the optic lobe dis-
played a generally lower staining intensity. In par-
ticular, the labelling was higher in the retina and in
the lamina whereas the medulla and the lobula
were very weakly labelled. Several fibers and vari-
cosities were clearly detectable in the medulla and
in the lobula. Both the monopolar cell layer of the
outer lamina, and the cell bodies adjacent to the
medulla were weakly stained in both sexes.

or mutant. The optic lobes of males and females
of the or strain displayed different NADPHd stain-
ing intensities (Figure 2 b, d). All the areas of the
optic lobes were strongly labelled in the or male
(Figure 2 b). The staining was most intense in the
retina and in the lamina, whereas the inner neu-
ropiles displayed less NADPHd staining. The pho-
toreceptors showed intense immunostaining and in
the lamina and in the outer medulla fibres and vari-
cosities were also clearly labelled. The monopolar
cell layer of the outer lamina was weakly stained.
On the contrary, in the or females (Figure 2 d) only
the retina displayed intense labelling; the staining
was weak in the lamina and it decreased in the
medulla and in the lobula. Low immunostaining was
present in the monopolar layer and only sporadi-
cally a few fibers and varicosities were labelled in
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Figure 1. Distribution of NADPHd staining in the optic lobes of
the w;M360 mutant of C. capitata. (a, b) Frontal sections, adult
male. A generally strong NADPHd staining is evident throughout
the lobes. The staining is very intense in the retina (re);
labelling is also present in the three neuropilar areas: lamina
(la), medulla (me) and lobula (lo), where it is locally associated
with distinct cell layers. In the medulla fibres and varicosites
are also clearly labelled. (c, d) Frontal sections, adult female.
All the areas of the lobes show NADPHd staining. A lower
labelling intensity, with respect to the male, is evident both in
retina and in all neuropilar regions. (a, c): objective 10x1.6; (b,
d): objective 40x.

the outer medulla.

w, Heraklion mutant. The w,Heraklion optic lobes
were stained by NADPHd reaction (Figure 2 a, c)
and, like the or and w,M360 mutants, they dis-
played different labelling intensities in males
(Figure 2 a) and females (Figure 2 c). In particu-
lar, lower intensity of staining was found in the
medulla and in the lobula, with respect to the reti-
na and the lamina in both sexes. However, the reti-
na and the lamina were strongly labelled in the
male. Cell bodies of the monopolar layer were not
stained, while in the lamina and outer medulla sev-
eral fibers and varicosities were labelled.

or,wp mutant. The or,wp optic lobes did not dis-
play different staining intensities in males and
females (not shown in figures). The labelling was
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Figure 2 Distribution of NADPHd staining in the optic lobes of
w,Heraklion mutant of C. capitata. (a, b) Frontal section, adult
male. NADPHd staining is evident throughout the lobes. The
staining is very strong in the retina (re); labelling is also pres-
ent in the neuropilar regions lamina (la) and medulla (me). (c,
d) Frontal section, adult female. All the areas of the lobes show
NADPHd staining. A slightly lower labelling intensity, in com-
parison with the male, is evident both in retina and in the lami-
na. (a, c): objective 10x; (b, d):objective 40x.

generally strong, particularly in the retina and in
the lamina.The lamina cartridge showed strong
labelling in both sexes. In the outer medulla, fibers
and varicosities were stained while the monopolar
cell layer of the outer lamina was weakly labelled.

Intensity values of NADPHd activity of or; or,wp;
w,M360 and w,Heraklion mutant optic lobes

The variation of NADPHd staining intensity in
the optic lobes of males and females of the four
strains was considered (Figure 3). The pattern of
staining distribution was similar in the optic lobes
of the four phenotypes: the retina and lamina gen-
erally displayed a higher degree of staining than the
medulla and lobula.

The comparison between males and females of



Figure 3. Distribution of NADPHd staining in the optic lobes of
or mutant of C. capifata. (a, b) Frontal section, adult male.
NADPHd staining is observed throughout the lobes. A strong
labelling is found both in the retina (re) and in lamina (la). (c,
d) Frontal section, adult females. The staining is moderate in all
the areas. A decreased intensity of labelling, with respect to
the male, is observed both in retina (re) and in lamina (la). (a,
c): objective 10x1.2; (b, d): objective 40x.
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each strain and among all the flies of the same sex
(Figure 4) showed that all the areas of the optic
lobes were generally strongly labelled in the male of
w,M360 strain and, much more, in the or mutants,
whereas significant differences in intensities were
not evident in the or,wp strain. In the w,Heraklion
strain, the female showed a slightly lower staining
with respect to the male, but this difference was not
highly significant. Moreover, it appeared that, while
in the male the intensity of NADPHd staining
increased when the eye pigmentation intensified, in
the female this relationship was not present.

Discussion

Technical considerations

Since the enzymatic activity of NOS requires a
cofactor NADPH, histochemistry has been used
extensively to localize NOS through the reduction
of tetrazolium salts to an insoluble formazan reac-
tion product. The large use of NADPHd staining
procedure indicates that it is sensitive and specific
for several tissues, after careful fixation with form-
aldehyde (Eldred, 2000) and therefore it is more
reliable in the detection of NOS in the animal king-
dom. In fact we have recently demonstrated NOS
immunoreactivity in Ceratitis w e w+ strains
(Conforti et al., 2002); however, results required
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Figure 4. Staining intensity values (mean * S.D.) of NADPHd activity of or;, or,wp, w,M360 and w,Heraklion mutants optic lobes.The
pattern of staining distribution was similar in the optic lobes of the four phenotypes: retina and lamina generally displayed a higher
degree of staining than the other neuropilar regions. The comparison between males and females of each strain showed that all the
areas of optic lobes were strongly labelled in the males of w,M360 and much more, in the males of or mutant. In or,wp mutants, the
difference between the two sexes was not significant. In w;M360 optic lobes, the variations of staining intensity between males and
females were significant (p<0.01) in retina, lamina and medulla, whereas lobula showed a low significance (p<0.05). In or optic lobes,
all variations of staining intensity between males and females were highly significant (p<0.001). Therefore, in w;Heraklion optic lobes,
the variations of staining intensity were not significant, except for retina and lamina that showed a low significance (p<0.05).
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Figure 5. Staining intensity values (mean * S.D.) of NADPHd activity of os, or,wp, w;M360 and w;Heraklion mutants optic lobes.
Comparison between all the flies of the same sex: while in the males the intensity of NADPHd staining increased when the eye pig-
mentation intensified, in the females this relationship was not present.

hard criticism for their evaluations, that was possi-
ble since we have already found clear differences of
NADPHd reactivity between w and w+ strains
(Conforti et al., 2001).

NOS-dependent NADPHd pattern and role in the
male optic lobes

NOS has been characterized in brain of various
insects, such as the honeybee Apis mellifera, the
fruitfly Drosophila melanogaster, the locust Schi-
stocerca gregaria and the cricket Acheta domesti-
ca (Elphick et al., 1996; Muller, 1994) but the cen-
tres of visual information processing exhibit very
different levels of staining among the species. While
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in Drosophila NADPH diaphorase staining appears
to be almost absent in visual neuropiles, Apis
exhibits an intermediate and Acheta and Schisto-
cerca a very strong labelling in the visual neuropiles
(Miller, 1997). The extreme differences in NADPH
diaphorase labelling in the visual system of the var-
ious insects suggest a role of the NO system which
is more likely characteristic for certain species than
a conserved function. Here we have used the
NADPHd histochemical technique on a single
species, the medfly C. capitata, comparing the
staining pattern of the optic lobes among four eye
colour mutant strains, i.e., or; or,wp, w,M360 and
w,Heraklion. Previously we demonstrated the piv-



otal role of nitric oxide (NO) in the modulation of
the chemosensory information, that seems to be
implicated also in visual processes and visually
guided behaviour of many insects, using NADPHd
staining on two different strains of the medfly C.
capitata (Conforti et al., 1999).

Our study revealed a peculiar pattern of NADPHd
staining in the optic lobes of the species with respect
to those previously observed in other insects.These
results showed that the staining pattern was similar
in the optic lobes of the four strains: the retina and
lamina generally displayed a higher degree of stain-
ing than the medulla and lobula.

The most remarkable feature was the difference
in the labelling intensity of the visual tissue among
the four eye colour phenotypes. The optic lobes of
the four strains displayed high staining along the
whole retina and lamina, whereas the medulla and
the lobula showed lower NADPHd labelling.
However, the optic lobes of the phenotypes with less
pigmented eye (w,Heraklion & w,M360) displayed
a weaker NADPHd staining, at least in the male
(see below), than those of the phenotypes with a
more intense eye pigmentation.

Independent studies of artificial populations of D.
melanogaster agree that where wild type and labo-
ratory eye colour mutants are in competition, the
mutants are at a distinct disadvantage (Torti et al.,
1997). There are observations which point to mat-
ing behaviour as a source of disadvantage to the
competing mutant flies: it was shown that wild type
males are more effective than mutant males when
competing for the same females (Geer & Green,
1962). Also in response to light D. melanogaster
eye colour mutants vary in their ability to orient
themselves, compared to wild type eye colour flies
(Fingerman, 1952; Spieth & Hsu, 1950). These
results emphasized the conclusion that a difference
in visual recognition or discrimination accounts for
the advantage of one type of male in the light.
Moreover, visual activities were tested during the
routine maintenance and on mating behaviour of
wild type (w+) and white eye Heraklion
(w,Heraklion) mutant of C. capitata. These tests
showed the higher competitiveness of the wild type
males in their mating choice, compared to the white
eye mutant males (Conforti et al., 1998; Conforti
et al., 1999). Based on these observations, the
marked NADPHd staining difference among or, or,
wp, w,M360 and w,Heraklion visual neuropiles,
which are specifically devoted to the analysis and
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elaboration of the visual signals, suggested a role
for NO in the regulation of the visual information
processes of C. capitata. Moreover, the observation
of the correlation between the NADPHd staining
and eye pigmentation suggested a possible relation-
ship between the intensity of eye pigmentation and
the protection of the visual system.

In particular, a neurodegenerative disease, analo-
gous to the human condition retinitis pigmentosa,
was analyzed in Drosophila (Fortini & Bonini,
2000). Mutant variants of several Drosophila pho-
toreceptor cell-specific proteins, including rhodop-
sin, structural proteins and other factors needed for
rhabdomere integrity all cause gradual, light-inde-
pendent degeneration. Therefore the intensity of eye
pigmentation could favour the protection of the
visual system.

Relationship between NOS-dependent NADPHd
and sex

The intensity of NADPHd staining differed in the
optic lobes of the four phenotypes and moreover it
appeared to differ, at least in some strains, between
the two sexes. All the areas of the optic lobes were
generally strongly labelled in the male, except for
the or,wp mutant, which did not display significant
labelling differences between sexes. Considering the
pattern of labelling intensity distribution in the four
strains, we observed that in the male the intensity
of NADPHd staining increased when the eye pig-
mentation intensified. As previously stated, these
results suggested a possible relationship among
NOS, eye pigmentation and visual information
processes in the C. capitata male. Otherwise, the
female displayed a very heterogeneous NADPHd
labelling and no correlation between eye pigmenta-
tion and NOS was shown. In comparison with the
males, the females of the or; w,M360 and
w,Heraklion strains displayed weak staining, where-
as the or,wp females appeared strongly labelled. In
particular, the weak staining of the optic lobes of
the or mutant, characterized by orange eye col-
oration, did not allow a correlation between intensi-
ty of eye pigmentation and NOS in the female.
These results could suggest that nitric oxide pro-
duction may be dependent upon behavioural differ-
ences linked to vision function in the two sexes of C.
capitata.

Several works (Franceschini et al., 1981;
Strausfeld, 1980) analyzed sexual dimorphism in
insect vision: some visually guided behaviour pat-
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terns differ between the sexes and presumably infor-
mation processing by nerve cells also differs in
males and females. Recent anatomical studies of
houseflies Musca domestica have demonstrated
that certain visual neurons are present only in
males. Also in the blowfly C. erythrocephala anoth-
er kind of sexual difference in the neural architec-
ture of the visual system was reported. In this fly
dimorphism was expressed by differences in the
shapes of analogous neurons in males and females,
as well as by the presence of some cells in only one
sex (Franceschini et al., 1981).

The widely accepted view that NO also plays an
essential role also in mating behaviour and that
there is an evident relationship between NOS and
sexual dimorphism, were confirmed by Hadeishi &
Wood’s work (Hadeishi & Woods, 1996) that
reported that NO is present in the mating behaviour
circuitry of the brain of the male Syrian hamster.
Obviously chemosensory and hormonal stimuli are
essential for mating in the male Syrian hamster;
NO is implicated in the regulation of male sexual
behaviour, and NOS is present in the limbic system.
Moreover, NO has a pivotal role in male courtship
behaviour of the urodele crested newt (Triturus
carnifex) but not that of the females (Zerani &
Gobbetti, 1996).

A number of experiments also displayed sexual
differences in the morphology and the function of
neurons in the brains of vertebrates and in particu-
lar mammals (Goto & Goto, 2000; Grachev &
Apkarian, 2000; Cooke et al., 1998; Raisman &
Field, 1973; Nottebohm & Arnold, 1976).

In the human brain sexual dimorphism was linked
not only to anatomical but also to chemical fea-
tures. The orbital frontal cortex and sensorimotor
cortex showed gender dependence, with women
demonstrating increased metabolite concentrations
compared to man (Nopoulos et al., 2000). Data
indicate that the morphology and chemistry of
brain may be sex-dependent.
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