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I
t has long been recognized that histochemistry
and cytochemistry offer the only ways of gath-
ering information about the biochemical compo-

sition of tissues and cells without disrupting their
microscopic architecture. A variety of methods have
been put forward for studying nuclei acids, proteins,
carbohydrates, lipids, enzymes and other compo-
nents of intact tissues and cells. By now, many of
these have only a historical interest. Some do, how-
ever, survive in microscopic and ultramicroscopic
applications, and have become incorporated in the
most refined and precise techniques that are cur-
rently available. Histochemical reactions range
from the classic procedures carried out on histolog-
ical sections to yield final stained products recog-
nizable under the light microscope (Figure 1), to
those which are applied on ultrathin sections, using
heavy metals or other electron-dense compounds to
reveal specific components under the electron
microscope (Figure 2A); others range from proce-
dures based on the antigen-antibody reaction that
are capable of revealing the presence of specific bio-
logical molecules (Figure 2B), to the biophysical
techniques which permit the qualitative and quanti-
tative analysis of elements (Figure 3); lastly, there
are the recently proposed ultra-high resolution
methods that allow nanoparticles to be recognized.
This brief review, which is based on personal experi-
ence and on the data in the literature, will discuss
the most important methods now being used.

Calcified tissues consist of specific cells and an
organic matrix that occupies more space than cel-
lular elements and whose outstanding feature is
that of being the site where calcification takes
place. In bone, the most often studied of all calcified
tissues, the most typical component of the organic
matrix is type I collagen. Other less well represent-
ed constituents are non-collagenous proteins, pro-
teoglycans and lipids bearing traces of enzymes and
growth factors. Inorganic structures, whose bio-
physical characteristics approach those of hydroxy-
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apatite, and for this reason are named crystals or
crystallites, are enmeshed in the matrix and are
very closely connected with its organic components.
Matrices of other calcified tissues (cartilage,
dentin, enamel, cementum, as well as mollusc shells,
crustacean exoskeletons, spicules of sea urchin
embryos, several unicellular organisms and patho-
logically calcified tissues) differ in their composi-
tion but all basically consist of an organic matrix
permeated by inorganic substance (see Bonucci
1992a).

One of the histochemical reactions most often
applied to the study of the calcification process
explores alkaline phosphatase activity. Long consid-
ered responsible for phosphate accumulation in
areas of early calcification (Robison 1923; Majno
and Rouiller 1951), without ever being assigned a
precise functional role (Whyte 1989), alkaline
phosphatase is a membrane-bound enzyme typical-
ly expressed in osteoblasts and chondrocytes (Doty

and Schofield 1976) but present in almost all cal-
cifying areas (de Bernard et al., 1986) and closely
correlated with the calcification process itself
(Gomez and Boyde 1994). It can be studied in his-
tological sections using Gomori’s method (Majno
and Rouiller 1951), one of whose modifications,
based on the use of cerium (Robinson and
Karnovsky 1983;Van Goor et al., 1989; Bonucci et
al., 1992; Hulstaert et al., 1992), can be used to
localize enzymatic activity under the electron
microscope. By applying this method, alkaline phos-
phatase activity has been demonstrated not only on
the osteoblast membrane, but extracellularly too, in
areas of calcification (Bonucci et al., 1992) and,
most clearly, in matrix vesicles, where the enzyme is
the most typical marker (Ali et al., 1970;
Matsuzawa and Anderson 1971; McLean et al.,
1987). Alkaline phosphatase can be studied using
immunohistochemical techniques under the light or
the electron microscope (De Bernard et al., 1986;
Bruder and Caplan 1990; Masuhara et al., 1992;
Morris et al., 1992).

Other often applied histochemical methods aim to
study the presence of glycoproteins and acid pro-
teoglycans in histological sections of calcified tis-
sues and their changes as calcification proceeds.
Glycoproteins are typically shown by the periodic
acid-Schiff (PAS) method, which is based on the
production of aldehyde groups by periodate oxida-
tion of vicinal hydroxyl groups and on their staining
by Schiff’s reagent (Puchtler et al., 1974).The dif-
fuse PAS-positivity of the cartilage matrix and the
osteoid border in bone are well-established findings
(Cabrini 1961), and glycoproteins are supposed to
play a direct role in calcification (de Bernard et al.,
1977; Addadi et al., 1989) in all calcifying matri-
ces, from vertebrates to invertebrates (Termine et
al., 1981; Butler et al., 1985; Goldberg and
Septier 1986; Nanci et al., 1989; Albeck et al.,
1996; Marxen et al., 1998; Wilt 1999; Levi-
Kalisman et al., 2001). PAS-like methods can be
applied in ultrastructural studies of glycoproteins
by using, rather than Schiff’s reagent, aldehyde-
reactive electron-dense compounds such as alkaline
bismuth (Ainsworth et al., 1972) or thiocarbohy-
drazide-silver proteinate (Scherft 1970; Spicer and
Schulte 1982). In electron microscopy, acidic phos-
photungstic acid can be used to identify glycopro-
teins along cell membranes (Marinozzi 1967;
Barsotti and Marinozzi 1980) and in calcifying
areas (Bonucci and Gherardi 1975; Bonucci
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Figure 1. Histological section of the epiphyseal cartilage and
metaphyseal trabeculae of the rat; von Kossa staining. The pos-
itivity (black stain) of the hypertrophic-degenerated cartilage
and of metaphyseal trabeculae documents the presence of cal-
cium phosphate in calcified areas. x 60.



2002). There is a rich literature on the histochem-
istry of acidic proteoglycans in calcified tissues,
reflecting the interest these substances have always
raised in relation to biological calcification
(reviewed by Kobayashi 1971, Buckwalter 1983,
Takagi 1990, Shepard 1992).They have long been
considered to have a prominent, but still imprecise-
ly known, role in the process: some authors
(reviewed by Schubert and Pras 1968; Takagi et
al., 1984) see them as promoting calcification, oth-
ers (Blumenthal et al., 1979) as inhibiting it, and
their function may well vary according to whether
they are immobilized on a substrate or free in solu-
tion (Linde et al., 1989), according to their state of
aggregation and the hydrodynamic size of their
molecules (Chen et al., 1984), or according to their
calcium phosphate content (Schubert and Pras
1968). Under the light microscope, their acidic
character is exploited to demonstrate them through
the reaction of their acid groups with cationic dyes
(Szirmai 1963). In this context, Alcian blue is
probably the most often used dye (Quintarelli et al.,
1964), but other cationic molecules can be utilized,
so giving rise to a metachromatic (Toluidine blue)
or basophilic reaction with acid proteoglycans
(Cabrini 1961).The link between the strongly posi-
tively-charged colloidal iron and acid proteoglycans
can be demonstrated under the light microscope
through its reaction with potassium ferrocyanide
and the formation of Prussian blue and, under the
electron microscope, by the intrinsic iron electron
density (Figure 2A).

Actually, some of the methods routinely used to
show the presence of specific substances in histo-
logical sections by light microscopy can be applied
to show the same substances in ultrathin sections by
electron microscopy. This is true not only of col-
loidal iron (Curran et al., 1965; Matukas et al.,
1967;Takagi et al., 1982), but also of other cation-
ic, electron-dense molecules which react with acid
proteoglycans, such as ruthenium red, cationized
ferritin, tannic acid-uranyl acetate (Spicer and
Schulte 1982), colloidal thorium dioxide (Scherft
and Moskalewski 1984), and bismuth nitrate
(Smith 1970).These substances have been applied
to the study of the calcification process in bone,
cartilage, dentin and other hard tissues (Kobayashi
1971). A proportion of the acid proteoglycans may
be lost during fixation, so better results are
obtained when they are used in tissues that have
been fixed with cetylpyridinium chloride-glutaralde-

hyde (Eisenstein et al., 1971; Chardin et al., 1990;
Hirabayashi et al., 1995), ruthenium red (Nuehring
et al., 1991), cationic dye-formaldehyde or -glu-
taraldehyde (Hunziker and Schenk 1987; Takagi
1990; Shepard 1992), or when cryopreservation
methods are used (high pressure freezing, freeze
substitution, and low temperature embedding; dis-
cussed by Hunziker and Schenk 1984).These meth-
ods, in fact, stabilize the proteoglycan molecules so
that, even if they collapse during fixation by tissue
soaking in aldehyde solutions and take on a granu-
lar shape (Matukas et al., 1967), they keep their
original, extended, filament-like shape when they
are stabilized by cations (Shepard 1992) or are
cryopreserved (Hunziker and Schenk 1984, 1987;
Hunziker and Herrmann 1990).

Acid proteoglycans in calcified tissues have also
been studied with immunohistochemical methods
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Figure 2. Electron microscopy of an unstained section of epi-
physeal cartilage: the inorganic substance appears as an elec-
tron-dense material located in intercellular matrix; asterisks
show chondrocyte lacunae. x 7,500. Upper inset: electron dif-
fraction of the same calcified area; the diffractogram shows
that the inorganic substance is hydroxyapatite-like and that it
probably consists of needle-shaped crystalline nanoparticles.
Lower inset: The enlargment of the electron microscope picture
confirms that the calcified areas contain needle-shaped
nanoparticles. x 145,000.



both under the light and the electron microscope
(Figure 2B). A fall in the protein-polysaccharide
content of cartilage before or during  calcification
has been shown with fluorescein-labeled antibodies
by Hirschman and Dziewiatkowski (1966). The
antibody CS-56 has been used to show chondroitin
sulfate distribution in epiphyseal cartilage and to
document its absence in the proliferative zone
(Nakano et al., 1996).The same antibody has been
used to verify the presence of chondroitin sulfate in
cartilage calcification nodules under the electron
microscope using colloidal gold post-embedding
immunocytochemistry (Bonucci and Silvestrini
1992). The monoclonal antibody 2-B-6, which
specifically recognizes chondroitin-4-sulfate or der-
matan sulfate after digestion with chondroitinase

ABC in RHT-fixed, LR-White-embedded tissues,
has been used to show their distribution in cartilage
(Hagiwara 1992) and in dentin (Septier et al.,
1998). Antibodies are also available for the local-
ization of biglycan (Takagi et al., 2000) and ker-
atan sulfate (Daugaard et al., 1991; Nakano et al.,
1996). Immunohistochemical studies of Nakamura
et al., (2001) have shown the presence of keratan
sulfate around matrix vesicles and in calcification
nodules of the rat calvarium.

The so-called non-collagenous proteins are the
components within calcifying matrices to which the
interest of investigators is at present primarily
directed. They comprise a wide group of mostly
phosphorylated (acidic), glycoprotein molecules
whose inappropriate, generic denomination possibly
derived from a wish to stress that bone calcification
was not exclusively due to collagen fibrils, so coun-
tering a widespread view of that period, and that
specific (non-collagenous) proteins of the matrix
may also have a role in the process.Whatever their
generic name, proteins of that type have been found
in all calcifying tissues and, although their role is
still uncertain, many believe they are the main reg-
ulators of the calcification process (reviewed by De
Bernard 1982; Butler et al., 1985; Fisher and
Termine 1985; Boskey 1989; Bonucci 2000). This
view is supported not only by their presence in tis-
sues, such as tooth enamel or mollusc shells, which
contain no collagen fibrils, but, above all, by their
affinity for calcium ions (calcium-binding proteins)
and by their close connection with inorganic sub-
stance in calcified areas. They can, in fact, only be
totally extracted from the calcified matrix after this
has been decalcified (Linde et al., 1980;Termine et
al., 1980, 1981).They can be studied with immuno-
histochemical methods (Bianco 1990) and a num-
ber of antibodies directed to specific proteins are
now available. The immunoreaction can be carried
out on histological sections, where it can easily be
recognized either by fluorescence, if an antibody
linked to a fluorochrome has been used, or by the
development of a stained product, if the antibody
has been linked to an enzyme such as peroxidase or
alkaline phosphatase. Immunoreaction can also be
applied to thin sections for electron microscopy,
mostly using the protein A-colloidal gold method
(McKee and Nanci 1995) or the enzymes reported
above, and/or can be carried out by non-morpho-
logical methods such as immunoblotting (Nanci et
al., 1998; Fukae et al., 2001).
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Figure 3. Different ways of showing acid proteoglycans under
the electron microscope. A) Matrix of epiphyseal cartilage
stained with colloidal iron at pH 2.8; iron ‘stains’ acid proteo-
glycans which appear as granular structures because their mol-
ecules collapsed during specimen fixation and dehydration. The
asterisk shows a chondrocyte lacuna. X 20,000.
B) Immunohistochemistry of an area of ossification; CS-56 mon-
oclonal antibody immunospecific for the glycosaminoglycan por-
tion of chondroitin sulfate: immunospecific gold particles are
present in the uncalcified osteoid matrix and in that of early
areas of calcification (calcification nodules; arrowheads). The
asterisk shows part the cytoplasm of an osteoblast. X 25,000.



Using these and other types of immunoreaction, a
number of proteins thought to have a role in calci-
fication have been detected in calcified matrices
(Bronckers et al., 1989; Bianco 1990). The main
ones found in bone are osteocalcin, osteonectin,
osteopontin (OPN), bone sialoprotein (BSP) and
bone acidic glycoprotein-75 (BAG-75). Except for
the first, these are all phosphorylated glycopro-
teins.Their role in calcification is still under discus-
sion; it is interesting, however, that three of them,
OPN, BSP and BAG-75 co-localize in calcification
nodules, i.e., areas of initial calcification which
develop in the osteoid tissue (Bianco et al., 1993;
Riminucci et al., 1995; Nanci 1999).They are also
found in cement lines (Chen et al., 1994).

Similar proteins are found in other calcified tis-
sues. A highly phosphorylated protein, called phos-
phophoryn, has been demonstrated in dentin
(Dimuzio and Veis 1978), where its concentration
appears to be directly related to the amount of min-
eral (Rahima et al., 1988); its concentration is, in
fact, high at the predentin-dentin interface but
gradually falls in passing towards the enamel
(Nakamura et al., 1985). No collagen fibrils are
present in enamel matrix, which consists of non-
collagenous proteins only (for review see Nanci
2003). These are highly acidic proteins tightly
bound to enamel crystals. They can be divided into
two groups, amelogenins and nonamelogenins; the
latter include ameloblastin (also named amelin, or
sheathlin), tuftelin, enamelin and a 65 kDa glyco-
protein.With enamel maturation, they undergo pro-
gressive extracellular proteolysis, which character-
izes various stages of enamel development and ulti-
mately leads to their almost complete disappear-
ance, as shown both by extraction methods and
immunohistochemistry (Blumen and Merzel 1972;
Nanci et al., 1992; Nanci et al., 1994; Smith and
Nanci 1996). Mineral-bound glycoproteins are also
found in the matrix of mollusc shells (Travis and
Gonsalves 1969;Wheeler 1992; Sudo et al., 1997)
and other calcified structures of invertebrates
(Benson and Wilt 1992; Wilt et al., 2003).

Besides collagen fibers and non-collagenous pro-
teins, other organic components can be found in
calcifying matrices.These include lipids, which have
long been known to occur in calcifying areas, where
they are so strongly bound to the inorganic sub-
stance that a fraction of them can only be extract-
ed after decalcification (Shapiro 1970a; Shapiro
1970b). First shown histochemically in calcifying

cartilage (Irving 1960), their presence as acidic
phospholipids has been confirmed under the elec-
tron microscope in cartilage (Bonucci and
Silvestrini 1994) and in bone (Takahashi et al.,
1991; Nefussi et al., 1992; Bonucci and Silvestrini
1995).They have also been demonstrated in dentin
fixed in the presence of malachite green (Goldberg
and Septier 1985) or treated with iodoplatinate
(Vermelin et al., 1994), and in cartilage and bone
fixed with malachite green and treated with the
phospholipase A2-gold method (Silvestrini et al.,
1996).The results of these investigations, in agree-
ment with those of biochemical studies (Peress et
al., 1974; Wuthier 1975; Wuthier and Gore 1977;
Wu et al., 2002), have shown that lipids are con-
tained in matrix vesicles. Calcium-acidic phospho-
lipid-phosphate complexes are formed which may
initiate the calcification process in cartilage
(Boskey et al., 1980) and bone (Boskey and Posner
1976; Boskey et al., 1982), as well as in unicellu-
lar organisms (Boyan et al., 1984) and pathologi-
cal vascular calcification (Dmitrovsky and Boskey
1985). Phospholipids have been shown immunohis-
tochemically in cartilage and bone (Bonucci et al.,
1997) and in dentin matrix vesicles (Tsuji et al.,
1994) using the MC22-33F monoclonal antibody,
which specifically reacts with choline-containing
phospholipids (Mark et al., 1992).

Considering that the most distinctive feature of
the calcified matrices is that they contain inorgan-
ic substance, it is hardly surprising that this has
been the topic of a large number of studies. Over a
long period these studies have mainly been based on
X-ray diffraction, which has shown that the inor-
ganic substance of bone and other calcified tissues
is hydroxyapatite. This technique (Finean and
Engström 1953; Carlström and Finean 1954),
along with electron microscopy (Bocciarelli 1970;
Ascenzi et al., 1978; Jackson et al., 1978), sug-
gested that apatite appears in bone as very thin,
needle- or platelet-like crystals (reviewed by Elliott
1973). These structures (shown in Figure 2, inset)
are, however, poorly crystallized and highly impure
and, especially at the earliest stage of formation,
show very little crystal arrangement (Bachra
1967), so it has been suggested that they are
paracrystalline structures comparable with
biopolymers (Wheeler and Lewis 1977; Arnold et
al., 2001). Possibly for this reason, they have been
called mineralites instead of crystallites (Eppell et
al., 2001;Tong et al., 2003).
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Several highly refined techniques, some of which
allow nanoparticles and atoms to be detected, have
been used to study the problem of the structure and
composition of the earliest inorganic particles and
their relationships with organic components. These
techniques have the disadvantage of being rather
complex and not available in all laboratories, but
they yield important results, ranging from the high
spatial resolution of element distribution to the
evaluation of the local concentration of nanoparti-
cles and single elements, from the assessment of the
degree of crystallinity to the appraisal of macro-
molecular crystals at subnanometer resolution, and
from mapping specific molecules to imaging protein
surface and membrane components. An excellent
example of what these techniques can achieve is the
images of individual aggregans macromolecules
and their constituent glycosaminoglycan chains
obtained by Ng et al., (2003) using atomic force
microscopy.

Some of these method are longstanding, others
are new. The list is quite long. Mentioning only the
most important ones, they comprise wide (Engfeldt
et al., 1985) and small (Fratzl et al., 1991) angle
X-ray diffraction and synchrotron radiation
(Ascenzi et al., 1985); selected area electron dif-
fraction (shown in Figure 2, inset; Landis and
Glimcher 1978; Arnold et al., 1999); neutron dif-
fraction (Wenk and Heidelbach 1999; Girardin et
al., 2000); electron spin resonance spectrometry
(Ostrowski et al., 1972; Roufosse et al., 1976;
Ascenzi et al., 1977); energy dispersive X-ray ele-
mental analysis, otherwise known as electron-probe
analysis (Lewinson and Silbermann 1990); energy-
filtering electron microscopy (Egerton 2003;
Leapman 2003); infrared spectroscopy (Paschalis
et al. 1996; Pleshko et al., 1991); and atomic force
microscopy (Reich et al., 2001; Santos and
Castanho 2004), besides other biophysical tech-
niques. Taken together, these methods have pro-
duced an impressive corpus of data which, together
with those obtained using histochemical (Brighton
and Hunt 1976; Appleton and Morris 1979; Morris
and Appleton 1980; Lewinson and Silbermann
1990) and autoradiographic (Lacroix 1960; Nagai
and Frank 1974) procedures that aim to determine
the movements of calcium and phosphate ions with-
in, and their binding to, the organic matrix, have
contributed a great deal to knowledge of the phys-
iopathology of bone and other calcified tissues.The
fine structure and composition of the earliest inor-

ganic particles are, however, still uncertain and so
far even the availability of techniques as sophisti-
cated as these has failed to produce a definitive
explanation of the way inorganic substance is actu-
ally deposited in the matrix.

Many of the difficulties encountered springs from
the close relationship that links inorganic and
organic substance. The former masks the latter,
which can, in its turn, hinder detection of the for-
mer. The merging of these two components often
makes it imperative to prepare for morphological
studies by using decalcification to unmask the
organic matrix. Regrettably, decalcification dis-
rupts the structure of the calcified matrix (reviewed
by Callis and Sterchi 1998). Several methods have
been proposed to preclude the extraction artefacts
that derive from the removal of inorganic substance
and the loss of organic components. The method
which appears to yield the best results is known as
PEDS (post-embedding decalcification and stain-
ing). In this case, sections of embedded tissues are
floated on a decalcifying solution before they are
stained (Bonucci 1967; Bonucci and Reurink
1978). This leaves the organic components intact,
because they are protected against the dangerous
effects of decalcification by being embedded in the
resin, as shown by their ultrastructure, which is so
well preserved that the tissue seems not to have
been decalcified at all (Bonucci 1992b).
Histochemical and immunohistochemical reactions
are possible after PEDS, provided that the embed-
ding resin is appropriate (Bonucci and Gherardi
1975; Bonucci et al., 1986, 1988, 1989; Goldberg
et al., 1980).

The results of PEDS confirm that the inorganic
and organic substance are closely linked in all cal-
cified tissues and suggest that the earliest inorgan-
ic particles, rather than being true crystals, are
organic-inorganic, crystal-like structures whose
formation and shape derive directly from the tem-
plate role of organic molecules (reviewed by
Bonucci 2002).The biochemical, histochemical and
immunohistochemical detection of acidic, phospho-
rylated glycoproteins in many, if not all, calcified
matrices, and their very close relationship with the
inorganic substance, have brought with them a new
attitude to the way crystals are formed, about the
mechanism of their maturation, and about the way
these proteins could trigger the process. Much
remains to be done, especially on the function of
single proteins and the relationship between them.
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In this connection, the possibility of using trans-
genic, knock-out or null animal models opens up
new, promising perspectives (Boskey 1998).
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