

Inositide-specific phospholipase C signalling in the nucleus*

L. Cocco¹, S.G. Rhee², R.S. Gilmour³, and F.A. Manzoli¹

¹Institute of Human Anatomy, University of Bologna, Via Irnerio 48, I-40126 Bologna, Italy; ²Cell Signalling Laboratory, NHLB, NIH, Bethesda, MA 20892; ³University of Auckland, Department of Molecular Medicine, Faculty of Medicine, Auckland, New Zealand

INTRODUCTION

The nucleus of eukaryotic cells contains all the information needed for cell proliferation and differentiation, however the initiation of these programmes are dependent on the signalling pathway elicited by different agonists. The existence of a nuclear phosphoinositide signalling stems from the early evidence that isolated nuclei posses the lipid kinases capable of phosphorylating phosphatidylinositol (PI) and phosphatidylinositol 4-phosphate (PIP). The synthesis of phosphatidylinositol 4,5-phosphate (PIP₂) was clearly increased only in the nuclear fraction from Friend cells terminally differentiated towards erythrocytes (Cocco *et al.*, 1987). On the contrary its amount along with that of PIP was decreased in nuclei of Swiss 3T3 cells stimulated to grow with insulin-like growth factor-I (IGF-I) (Manzoli *et al.*, 1989). Following these early observations we and others have demonstrated in several cell type the participation of the whole phosphoinositide cycle in the nucleus (Cocco *et al.*, 1994; Martelli *et al.*, 1992; Divecha *et al.*, 1991; Martelli *et al.*, 1994; Mazzoni *et al.*, 1992). Here we review the most recent achievements on this issue.

NUCLEAR PHOSPHOLIPASE C

The association of nuclear polyphosphoinositide hydrolysis and the progression of cell cycle has been suggested by the very first evidence that IGF-

I, which acts via a classical tyrosine kinase receptor and does not involve inositol lipid cycle at the plasma membrane, activates the breakdown of separate pool of nuclear phospholipids to yield the second messenger diacylglycerol (for more details see Cocco *et al.*, 1994 and references therein) in a manner that is, at first sight, analogous to the well analysed plasma membrane counterpart (Berridge, 1993). Form separate laboratories evidence came out that in Swiss 3T3 cells (Martelli *et al.*, 1992) as well as in the rat liver (Divecha *et al.*, 1993a) a nuclear PLC signalling exists, characterised by a strict partitioning of PLC isoforms, since the γ isoform is confined to the cytoplasm and a β isoform (β_1) is specific for the nucleus. The activity of the nuclear isoform increases 2-3 fold within minutes of stimulation of Swiss 3T3 cells by IGF-I and this can be verified with measurement of the breakdown of polyphosphoinositides in the cell nucleus and by direct assay of PLC activity in nuclear extracts, whilst cytoplasmatic PLC activity assayed similarly does not alter on IGF-I stimulation (Divecha *et al.*, 1991; Martelli *et al.*, 1992). That the activation of PLC β_1 and that the hydrolysis of nuclear PI are a key step for the mitotic response has been suggested from the isolation of a 3T3 clone which binds IGF-I yet and fails both to activate nuclear PLC and to undergo cell division (Martelli *et al.*, 1991a).

Therefore the molecular scenario depicted by the activation of nuclear PLC β_1 by IGF-I stimulation in Swiss 3T3 cells point out to an enhanced gener-

*Presented at the 28th national Congress of the Italian Society of Histochemistry June 2-4, 1999 Camerino (Italy)

ation of DAG (Divecha *et al.*, 1991) and this has been proposed as a likely mechanism for determining PKC translocation to the nucleus, which indeed occurs after IGF-1 treatment (Martelli *et al.*, 1991b). It is well known that the protein kinase C family comprises several isoforms differing in both enzymatic properties and cellular localisation (Buchner *et al.*, 1995). Since the canonical isoforms are dependent on DAG for their activation we decided to analyse whether or not these isoforms could translocate to the nucleus. For this aim we have used isozyme specific anti-PKC antibodies and we have shown that are expressed four PKC isozymes, i.e. α , β I, ϵ , ξ in Swiss 3T3 cells. After treatment with IGF-I only the α isoform translocates to the nucleus. Moreover confocal microscopy confirms the Western Blots and resolves the issue of the actual localisation of PKC in the nucleus after translocation since the *in situ* confocal sections through the equatorial plane of the cells indicate that an accumulation of PKC α within the nucleus is induced after stimulation of Swiss 3T3 cells by IGF-I (Neri *et al.*, 1994) as a consequence of increased nuclear PLC β activity which induces an increase in the concentration of nuclear DAG (Martelli *et al.*, 1992; Divecha *et al.*, 1991). DAG likely represents an attractant for PKC α , although the exact mechanism for this remains still obscure. These data contribute to an understanding of how signals originating at the plasma membrane are transmitted to the nucleus. The steps leading to mitosis are characterised by an ordered sequence of events which links nuclear inositol lipid cycle to the translocation and stimulation of PKC α through the accumulation of nuclear DAG, a well known physiological activator of this isoform (Nishizuka, 1984). PKC could phosphorylate a number of nuclear proteins, besides nuclear lamins (Cocco *et al.*, 1994), involved in the early nuclear events leading to DNA replication. The role of PKC α in the nucleus has been recently highlighted by a report showing that nuclear DAG kinases is a substrate for PKC α (Topham *et al.*, 1998). In addition to IGF-I also Interleukin 1 α stimulates nuclear PLC β in human Osteosarcoma SaOS-2 cells (Marmiroli *et al.*, 1994) in a similar time frame indicating that also in this case the breakdown of nuclear PIP₂ represents one of the earliest events in the signalling evoked by the cytokine. More recently it has been confirmed that nuclear PLC β is con-

stitutively expressed in the nucleus and that its activation is related with the very early steps of nuclear signalling while a new PLC δ is expressed later on during the transition from G₁ to S phase (Liu *et al.*, 1996). The evidence of the existence of a nuclear inositol lipid cycle has been demonstrated by the large number of findings reported above. Albeit these results suggest a key role for PLC β at the nucleus it was still lacking a direct link between nuclear PLC β activation and IGF-I induced mitogenesis. For this reason we have set up two separate strategies in order to better clarify this issue. Since antisense technique offers the potential to block the expression of specific genes within the cell, we have tried to induce the silencing of the PLC β gene by overexpressing antisense mRNA. At the same time we have overexpressed the full length cDNA of PLC β in the 5'-3' orientation. Swiss 3T3 cells were transfected with the antisense PLC β cDNA and the measurement of PLC β levels in these stably transfected cells indicated that the enzyme is absent and that this is accompanied by a dramatic reduction of the stimulation of DNA synthesis after IGF-1 stimulation (Manzoli *et al.*, 1997), which is known to induce activation of the nuclear PLC β (Martelli *et al.*, 1992). On the contrary overexpression of full length PLC β cDNA in the sense orientation increased dramatically the number of cell in S phase after IGF-I treatment (Manzoli *et al.*, 1997). Albeit further experiments are required to confirm the inhibition of DAG generation and of PKC translocation to the nucleus, these findings argue strongly for a key role for nuclear PLC β in the very early steps of the signalling machinery responsible for the onset of DNA synthesis. That there is a direct link between PLC β and DNA synthesis is also linked by the peculiar chromosome localisation of this PLC, since we have demonstrated the localisation of the PLC β gene in the rat chromosome 3q35-36 (Calabrese *et al.*, 1995), which is a hot spot for genetic alterations in the rat since it is frequently rearranged in a number of tumours induced by chemical carcinogenesis (Debrie-Tychter *et al.*, 1991; Holeck *et al.*, 1989; Endo *et al.*, 1990). The nuclear localisation of PLC β and the chromosomal localisation of its gene in a hot spot region intrigue about the relationship between normal and/or neoplastic growth and nuclear PLC signalling in the light of the suggest-

ed role of the autonomous nuclear signalling via inositol lipids in several all functions (Divecha *et al.*, 1993b; Maraldi *et al.*, 1994; Martelli *et al.*, 1996; York *et al.*, 1994a; York *et al.*, 1994b; Capitani *et al.*, 1990; De Vries *et al.*, 1995; Payrastre *et al.*, 1992). A new step of this story has been recently added by investigations aimed to ascertain whether other members of the PLC β family could localise in the nucleus and which role could be exerted by each single isozyme upon mitogenic stimulation. Using NIH 3T3 cells it has been possible to obtain with two purification strategies, in the presence or in the absence of Nonidet P-40, both intact nuclei still maintaining the outer membrane and nuclei completely stripped of their envelope. In these nuclei we show that not only PLC β_1 is present but also the other members of the family are detectable. The more abounding isoform is PLC β_1 followed by PLC β_3 , PLC β_2 and PLC β_4 respectively. All the isoforms are enriched in nuclear preparations free from nuclear envelope and cytoplasmic debris, indicating that the actual localisation of the PLC β isozymes is in the inner nuclear compartment (Cocco *et al.*, 1999). Upon mitogenic stimulation the nuclear PLC activity increases to a higher extent in membrane stripped nuclei respect to intact nuclei, suggesting that the PLC located in the interior of the nucleus is involved in the phosphoinositide signalling events related to cell growth and the increase in PLC activity is due almost entirely to PLC β_1 (Cocco *et al.*, in press). The stimulation of this PLC is paralleled by both its phosphorylation and translocation in the same time frame as MAP kinase to the nucleus and requires an intact cytoskeleton (Martelli *et al.*, 1999).

These findings strongly support the functional relevance during mitogenic stimulation of an autonomous inositol lipid cycle, which takes place at the nuclear interior, giving rise to a discrete topography which is directly related to the function of PLC signalling in that stimulation by a ligand, i.e. IGF-I, of a tyrosine kinase receptor activates only nuclear/nuclear matrix associated PLC but not the one associated to the plasma membrane. In this context it is interesting to report that at the nuclear envelope there is a separate phospholipase activity which utilises phosphatidylcholine as substrate following different types of stimulation (Baldassare *et al.*, 1997). The very beginning of the nuclear inositol lipid story has dealt with the changes occurring in

the amount of PIP₂ in nuclei of Friend cells differentiated towards erythrocytes (Cocco *et al.*, 1987). Following this early report evidence has been obtained hinting at nuclear PLC β_1 as a central signalling enzyme during erythroid differentiation of Friend cells (Martelli *et al.*, 1994; Martelli *et al.*, 1995; Zini *et al.*, 1995; Divecha *et al.*, 1995). Moreover using the antileukaemic drug tiazofurin we have suggested nuclear PLC β_1 as possible target for chemiotherapeutic drugs capable of modulating differentiation of leukaemia cells (Manzoli *et al.*, 1995). Indeed tiazofurin, which is capable of inducing erythroid differentiation along with down-regulation of c-Ki-ras proto-oncogene (Olah *et al.*, 1988) and inhibiting an uncharacterised nuclear PLC activity in Friend cells (Billi *et al.*, 1993) affects expression of nuclear PLC β_1 . Isolated nuclei from undifferentiated cells contain PLC β_1 which is markedly lowered in nuclei from DMSO or tiazofurin treated cells and this is accompanied by a down-regulation of PLC activity and a reduction of PLC β_1 mRNAs as evidenced by the Northern analysis (Martelli *et al.*, 1994; Manzoli *et al.*, 1995). Therefore the erythroid differentiation system *in vitro*, i.e. Friend erythroleukemia cells treated with different inducers, offered an opportunity of evaluating the relationship between the induction of haemoglobin synthesis and the activity of the enzymes of the nuclear inositol lipid cycle (Martelli *et al.*, 1995). The data obtained with this experiments suggest that the down-regulation, induced by DMSO or tiazofurin, of the nuclear PLC β_1 isoform is somehow related to with the establishment of erythroid differentiation and that this enzyme could be a possible target for anti-tumour drugs (Manzoli *et al.*, 1995).

More recently this issue has been deeper investigated and it has been shown that nuclear PLC β_1 is directly involved in switching the erythroleukemia cells programming for an undifferentiated to a differentiated state.

The availability of a mutant lacking the nuclear localisation signalling, which is determined by a cluster of lysine residues in the COOH-terminal tail (Kim *et al.*, 1996), gave us the possibility of analysing the different role of PLC β_1 depending on its subcellular localisation. Indeed when PLC β_1 is localised almost entirely in the nucleus, by over-expressing the wild-type cDNA containing the nuclear localisation signal, the differentiation towards erythrocytes, as determined by both the

expression of β -globin and the activation of the transcription factor NF-E2, essential for erythroid differentiation upon DMSO treatment (Andrews *et al.*, 1993), is abolished whilst Friend cells transfected with the PLC β_1 mutant lacking the nuclear localisation signal and overexpressing PLC β_1 only in the cytoplasm differentiate exactly as parental cells do (Matteucci *et al.*, 1998). This result assigns to nuclear PLC β_1 a role as a negative regulator of erythroid differentiation and fits with the peculiar nuclear localisation of PLC β_1 in other tumour cells such as C6Bu-1 glioma cells (Bahk *et al.*, 1998).

It is worth mentioning that it has been recently reported that PIP₂ targets the BAF (Brm associated factor) complex to chromatin and nuclear matrix defining a direct interface between chromatin organisation and signal transduction (Zaho *et al.*, 1998). This chromatin remodelling factor acts similarly to transcription factors and its dependency on PIP₂ strengthens the contention that nuclear PLC activity is mainly involved in maintaining the optimal concentration of nuclear PIP₂.

All in all the data discussed above clearly demonstrate the existence of a PLC signalling in the nucleus and sustain the role of this pathway in the control of the early steps of the molecular machinery which regulates both proliferative and differentiative processes.

ACKNOWLEDGEMENTS

This work was supported by AIRC (Italian Association for Cancer Research) grant, "Funds for Selected Research Topics" from the University of Bologna, Italian MURST Cofin99 and Italian CNR PF Biotech.

REFERENCES

Andrews N.C., Erdjument-Bromage H., Davidson M.B., Tempst P., and Orkin S.H.: Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. *Nature (London)* **362**, 722-728, 1993.

Bahk Y.Y., Song H., Baek S.H., Park B.Y., Kim H., Ryu S.H., and Suh P.G.: Localisation of two forms of phospholipase C β_1 a and b, in C6Bu-1 cells. *Biochim. Biophys. Acta* **1389**, 76-80, 1998.

Baldassare J.J., Jarpe M.B., Alferes L., and Raben D.M.: Nuclear translocation of RhoA mediates the mitogen-induces activation of phospholipase D involved in nuclear envelope signal transduction. *J. Biol. Chem.* **272**, 4911-4914, 1997.

Berridge M.J.: Inositol trisphosphate and calcium signalling. *Nature (London)* **361**, 315-325, 1993.

Billi A.M., Cocco L., Martelli A.M., Gilmour R.S., and Weber G.: Tiazofurin -induced changes in nuclei of Friend erythroleukemia cells. *Biochem. Biophys. Res. Comm.* **195**, 8-12, 1993.

Buchner K., Protein kinase C in the transduction of signals toward and within the cell nucleus. *Eur. J. Biochem.* **228**, 211-221, 1995.

Calabrese G., Gilmour R.S., Stuppia L., di Pietro R., Palka G., and Cocco L.: Chromosome mapping of the rat phospholipase C. *Mamm. Genome* **6**, 549-550, 1995.

Capitani S., Helms B., Mazzoni M., Previati M., Bertagnolo V., Wirtz K.W.A., and Manzoli F.A.: Uptake and phosphorylation of phosphatidylinositol in rat liver nuclei. Role of phosphatidylinositol transfer protein. *Biochim. Biophys. Acta* **1044**, 139-200, 1990.

Cocco L., Gilmour R.S., Ognibene A., Manzoli F.A., and Irvine R.F.: Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. *Biochem. J.* **248**, 765-770, 1987.

Cocco L., Martelli A.M., and Gilmour R.S.: Inositol lipid cycle in the nucleus (mini-review). *Cell Signalling* **6**, 481-485, 1994.

Cocco L., Martelli A.M., Mazzotti G., Barnabei O., and Manzoli F.A.: Inositol and the nucleus: phospholipase C β family localisation and signalling activity. *Adv. Enzyme Regul.* **40**, in press.

Cocco L., Rubbini S., Manzoli L., Billi A.M., Faenza I., Peruzzi D., Matteucci A., Artico M., Gilmour R.S., and Rhee S.G.: Inositol and the nucleus: presence and characterisation of the isoforms of phospholipase C family in NIH 3T3 cells. *Biochim. Biophys. Acta* **1438**, 295-299, 1999.

De Vries K.J., Heinrichs A.A.J., Cunningham E., Brunick F., Westerman J., Somerjhu J., Cockcroft S., Wirtz K.W.A., and Snoek G.T.: An isoform of the phosphatidylinositol transfer protein transfers sphingomyelin and is associated with the Golgi system. *Biochem. J.* **310**, 643-649, 1995.

Debrie-Rychter M., Azuma M., Zukowski K., Oyasu R., and Wang C.Y.: Specific chromosome changes associated with acquisition *in vivo* of tumorigenicity in carcinogen-induced rat urinary bladder carcinoma cells. *Genes, Chromosom. Cancer* **3**, 221-230, 1991.

Divecha N., Banfic H., and Irvine R.F.: The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. *EMBO J.* **10**, 3207-3214, 1991.

Divecha N., Banfic H., and Irvine R.F.: Inositides and the nucleus and inositides in the nucleus. *Cell* 74, 405-407, 1993.

Divecha N., Letcher A.J., Banfic H., Rhee S.G., and Irvine R.F.: Changes in the components of a nuclear inositide cycle during differentiation in murine erythroleukaemia cell. *Biochem. J.* 312, 63-67, 1995.

Divecha N., Rhee S.G., Letcher A.J., and Irvine R.F.: Phosphoinositide signalling enzymes in rat liver nuclei: phosphoinositidase C isoform β_1 is specifically, but not predominantly, located in the nucleus. *Biochem. J.* 28, 617-620, 1993.

Endo S., Nettesheim P., Oshimura M., and Walker C.: Non-random chromosome alterations that correlate with progression to immortality in rat tracheal epithelial cells transformed with Nmethyl-N'-nitro-N-nitrosoguanidine. *Cancer Res.* 50, 740-747, 1990.

Holeck B.U., Kerler R., and Rabes H.M.: Chromosomal analysis of a diethylnitrosamine-induced tumorigenic and nontumorigenic rat liver cell line. *Cancer Res.* 49, 3024-3028, 1989.

Kim C.G., Park D., and Rhee S.G.: The role of carboxyl-terminal basic aminoacids in G_q a-dependent activation, particulate association and nuclear localisation of phospholipase C β_1 . *J. Biol. Chem.* 271, 21187-21192, 1996.

Liu N., Fukami K., Yu H., and Takenawa T.: A new phospholipase C δ_4 is induced at S phase of the cell Cycle and appears in the nucleus. *J. Biol. Chem.* 271, 355-360, 1996.

Manzoli F.A., Martelli A.M., Capitani S., Maraldi N.M., Rizzoli R., Barnabei O., and Cocco L.: Nuclear p-inositides during cell growth and differentiation. *Advan. Enzym. Regul.* 28, 25-34, 1989.

Manzoli L., Billi A.M., Gilmour R.S., Martelli A.M., Matteucci A., Rubbini S., Weber G., and Cocco L.: Phosphoinositide signalling in nuclei of Friend cells: Tiazofurin downregulates phospholipase C. *Cancer Res.* 55, 2978-2980, 1995.

Manzoli L., Billi A.M., Rubbini S., Bavelloni A., Faenza I., Gilmour R.S., Rhee S.G., and Cocco L.: Essential role for nuclear phospholipase C β_1 in insulin-like growth factor -I induced mitogenesis. *Cancer Res.* 57, 2137-2139, 1997.

Maraldi N.M., Cocco L., Capitani S., Mazzotti G., Barnabei O., and Manzoli F.A.: Lipid-dependent nuclear signalling: morphological and functional features. *Advan. Enzyme Regul.* 34, 129-143, 1994.

Marmiroli S., Ognibene A., Bavelloni A., Cinti C., Cocco L., and Maraldi N.M.: Interleukin 1 α stimulates nuclear phospholipase C in Human Osteosarcoma SaOS-2 cells. *J. Biol. Chem.* 269, 13-16, 1994.

Martelli A.M., Gilmour R.S., Bertagnolo V., Neri L.M., Manzoli L., and Cocco L.: Nuclear localisation and signalling activity of phosphoinositidase C β_1 in Swiss 3T3. *Nature (London)* 358, 242-245, 1992.

Martelli A.M., Bareggi R., Cocco L., and Manzoli F.A.: Stimulation of nuclear polyphosphoinositide synthesis by GTP- γ -S: A potential regulatory role for nuclear GTP-binding proteins. *Biochem. Biophys. Res. Comm* 218, 182-186, 1996.

Martelli A.M., Billi A.M., Gilmour R.S., Neri L.M., Manzoli L., Ognibene A., and Cocco L.: Phosphoinositide signalling in nuclei of Friend cells: phospholipase C β_1 down regulation related to cell differentiation. *Cancer Res.* 54, 2536-2540, 1994.

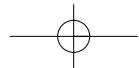
Martelli A.M., Cataldi A., Manzoli L., Billi A.M., Rubbini S., Gilmour R.S., and Cocco L.: Inositides in nuclei of Friend cells: changes of polyphosphoinositide and diacylglycerol levels accompany cell differentiation. *Cell Signalling* 7, 53-56, 1995.

Martelli A.M., Cocco L., Bareggi R., Tabellini G., Rizzoli R., Ghibellini M.D., and Narducci P.: Insuline-like growth factor-I-dependent stimulation of phospholipase C- β_1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase. *J. Cell. Biochem.* 72, 339-348, 1999.

Martelli A.M., Gilmour R.S., Neri L.M., Manzoli L., Corps A.N., and Cocco L.: Mitogen stimulated events in nuclei of Swiss 3T3 cells. Evidence for a direct link between changes of inositol lipids, protein kinase C requirement and the onset of DNA synthesis. *FEBS Letters* 283, 243-246, 1991.

Martelli A.M., Neri L.M., Gilmour R.S., Barker P.J., Huskisson N.S., Manzoli F.A., and Cocco L.: Temporal changes in intracellular distribution of protein kinase C in Swiss 3T3 cells during mitogenic stimulation with insulin-like growth factor-1 and bombesin: translocation to the nucleus follows rapid changes in nuclear polyphosphoinositides. *Biochem. Biophys. Res. Comm.* 177, 480-487, 1991.

Matteucci A., Faenza I., Gilmour R.S., Manzoli L., Billi A.M., Peruzzi D., Bavelloni A., Rhee S.G., and Cocco L.: Nuclear but not cytoplasmatic phospholipase C β_1 inhibits differentiation of erythroleukemia cells. *Cancer Res.* 58, 5057-5060, 1998.

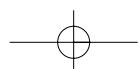

Mazzoni M., Bertagnolo V., Neri L.M., Carini C., Marchisio M., Milani D., Manzoli F.A., and Capitani S.: Discrete subcellular localisation of phospholipase C β , γ , δ in PC12 rat pheochromocytoma cells. *Biochem. Biophys. Res. Comm.* 187, 114-120, 1992.

Neri L.M., Billi A.M., Manzoli L., Rubbini S., Gilmour R.S., Cocco L., and Martelli A.M.: Selective nuclear translocation of protein kinase C α in Swiss 3T3 cells treated with IGF-I, PDGF and EGF. *FEBS Lett.* 347, 63-68, 1994.

Nishizuka Y.: The role of protein kinase C in cell surface signal transduction and tumour promotion. *Nature (London)* 308, 603-608, 1984.

Olah E., Natsumeda Y., Ikegami T., Kote Z., Horonyi M., Szelenyi J., Paulik E., Kremmer T., Hollan S.R., Sugar J., and Weber G.: Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K562 leukaemia cells. *Proc. Natl. Acad. Sci. USA* 8, 6533-6537, 1988.

Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A.J., and van Bergen en Henegouwen P.M.P.: A differential location of phospholipase kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. *J. Biol. Chem.* 287, 5078-5084, 1992.


Topham M.K., Bunting M., Zimmerman G.A., McIntyre T.M., Blackshear P.J., and Prescott S.M.: PKC regulates the nuclear localisation of DAGK. *Nature (London)* 394, 697-700, 1998.

York J.D., Saffitz E., and Majerus P.W.: Inositol polyphosphate 1-phosphatase is present in the nucleus and inhibits DNA Synthesis. *J. Biol. Chem.* 269, 19992-19999, 1994.

York J.D., and Majerus P.W.: Nuclear phosphatidylinositol decrease during S-phase of the cell cycle in HeLa cells. *J. Biol. Chem.* 269, 7847-7850, 1994.

Zhao K., Wong W., Rando O.J., Xue Y., Swiderek K., Kuo A., and Crabtree G.R.: Rapid and phosphatidylinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. *Cell* 95, 625-636, 1998.

Zini N., Ognibene A., Marmiroli S., Bavelloni A., Maltarello M.C., Faenza I., Valmori A., and Maraldi N.M.: The intranuclear amount of phospholipase β_1 , decreases following cell differentiation in Friend cells, whereas γ isoform is not affected. *Eur. J. Cell Biol.* 68, 25-34, 1995.

