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Abstract 

The aim of the present study was to investi-
gate whether hyperinsulinaemia, which fre-
quently precedes insulin resistance syndrome
(obesity, diabetes), induces apoptosis of
endothelial cells (ECs) in brown adipose tissue
(BAT) and causes BAT atrophy and also, to
investigate the possible mechanisms underly-
ing ECs death. In order to induce hyperinsuli-
naemia, adult male rats of Wistar strain were
treated with high dose of insulin (4 U/kg,
intraperitonely) for one or three days.
Examinations at ultrastructural level showed
apoptotic changes of ECs, allowing us to point
out that changes mainly but not exclusively,
occur in nuclei. Besides different stages of
condensation and alterations of the chromatin,
nuclear fragmentation was also observed.
Higher number of ECs apoptotic nuclei in the
BAT of hyperinsulinaemic rats was also con-
firmed by propidium iodide staining.
Immunohistochemical localization of tumor
necrosis factor-alpha (TNF-α) revealed
increased expression in ECs of BAT of hyperin-
sulinaemic animals, indicating its possible
role in insulin-induced apoptotic changes.
These results suggest that BAT atrophy in
hyperinsulinaemia is a result of endothelial
and adipocyte apoptosis combined, rather than
any of functional components alone. 

Introduction

The importance of brown adipose tissue
(BAT) in metabolic regulation of energy bal-
ance is well established. Namely, BAT has an
unique ability of heat production and body
temperature maintenance in mammals.1 Until
now the main focus of brown fat investigation
was on brown adipocytes although it is well
known that all of three major components of
BAT are important for its thermogenic func-

tion: i) brown adipocyte’s mitochondria and
lipid droplets; ii) sympathetic innervation; and
iii) capillary network.2-6 An important charac-
teristic of BAT and white adipose tissue (WAT)
is their enormous plasticity, i.e., their capabil-
ity of volume changes and, to a lesser extent,
cell number variations. It has also been recog-
nized that an extensive capillary network sur-
rounds each adipocyte.7 This is especially true
for brown adipocytes which are considered to
be highly vascularized and that almost one-
third of brown adipocyte membrane is in direct
contact with capillaries.7,8 There is a close
functional relationship between fat tissue and
its vasculature, and angiogenesis is required
for both the development and growth of adi-
pose tissue.9-11 Therefore, BAT mass is consid-
ered to depend on both the number of brown
adipocytes and the capillary density. Also, BAT
atrophy is involved in development of several
metabolic-related diseases (obesity, diabetes).
Unlike well documented contribution of brown
adipocyte apoptosis to the BAT atrophy, the
possible role of endothelial cells (ECs) in that
process is still obscure. 

Apoptosis is a mode of programmed cell
death in which intrinsic cellular mechanisms
participate in the removal of cells. The
endothelial position between tissues and cir-
culating blood assures its simultaneous and
constant exposure to a wide variety of stimuli,
many of which have the potential to induce or
prevent apoptosis of its cells.12 The receptors
and exact signal transduction pathways for
endothelial pro- and anti-apoptotic stimuli are
largely unknown, but the available data seem
to support one important conclusion: the local
balance of pro- and anti-apoptotic stimuli
decides the survival of each individual EC. The
modulation of endothelial apoptosis may play a
role in atherosclerosis, obesity, angiogenesis,
vascular remodelling and other physiological
and pathophysiological states and processes.
Also, it was found that anti-angiogenic agents
can prevent the tissue growth.13

BAT is an important target for insulin action
and the understanding of its role appears to be
of special importance considering the poten-
tial influence of in vivo hyperinsulinaemia in
the development of obesity. Namely, hyperin-
sulinaemia and insulin resistance are normal
consequences of overfeeding which precedes
obesity. Although moderate hyperinsulinaemia
might be tolerated in the short term, chronic
hyperinsulinaemia exacerbates insulin resist-
ance and contributes directly to diabetes.14 In
addition, Liu et al. demonstrated that insulin
per se is a stronger inducer of insulin resist-
ance than hyperglycemia, at least in type 1 dia-
betes.15 Our previous study showed hyperin-
sulinaemia-induced brown adipocytes apopto-
sis,16 which was also confirmed in the cell cul-
ture by other laboratories.17 Thus, we were

interested in insulin effects on ECs survival
since they are structurally and functionally
accompanied to brown adipocytes. 

We were also interested in the examination
of TNF-α role as a link between adiposity and
the development of insulin resistance since
this cytokine has a role in limiting fat mass
through the induction of insulin resistance
and represents a key-link in this process.
Namely, majority of type 2 diabetic subjects are
obese, and this cytokine is highly expressed in
adipose tissues of obese subjects17 and also,
obese mice lacking either TNF-α or its recep-
tors showed protection against developing
insulin resistance.18 Because of its ability to
inhibit insulin receptor signaling,19-21 TNF-α
represents a component of obesity-related
insulin resistance22 and has also been shown
to induce brown and white adipocyte apopto-
sis.23-26 Besides, there are some findings sug-
gesting that TNF-α exerts antiangiogenic
effect by EC-specific effects27 and that its acti-
vation may, directly or indirectly, contribute to
the pathogenesis and development of micro-
vascular diabetic complications.28 Therefore,
we studied effects of hyperinsulinaemia on EC
apoptosis in BAT of hyperinsulinaemic rats
and the possible role of TNF-α in this process.

Apoptotic changes of ECs nuclei were visual-
ized by transmission electron microscopic
analysis and by propidium iodide staining,
while proinflammatory cytokine TNF-α was
detected by immunohistochemical labeling.
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Materials and Methods

Experimental analysis and design
Experimental protocol was approved by the

Ethical Committee for the Treatment of
Experimental Animals of the Faculty of Biology,
Belgrade. Animals were cared for in accor-
dance with the principles of the Guide to the
Care and Use of Experimental Animals. 

Male albino rats of Wistar strain, weighting
220-250 g at the beginning of the experiment,
were used. The animals were born and accli-
mated to 22±1°C and were maintained under
12 h light/dark cycle. They were given commer-
cial rat food (Subotica, Serbia) and tap water
ad libitum during the experiment. The rats
were divided in 4 groups and were injected
with insulin for 1 day (acute treatment) or for
3 days (chronic treatment) respectively, (4
U/kg of body mass, one dose per day, intraperi-
tonely), or in the same way, with saline (1
mL/kg, vehicle groups). Three hours after the
last injection the animals were sacrificed and
the interscapular portion of BAT was removed,
dissected and processed for electron and light
microscopic examinations. 

Ultrastructural study
A half portion of BAT was cut into small

pieces, fixed in 2.5% glutaraldehyde in 0.1M
phosphate buffer (pH 7.2) and postfixed in 1%
osmium tetroxide in the same buffer. The
specimens were dehydrated through serial
ethanol solutions of increasing concentration
and were embedded in Araldite (Fluka, Seelze,
Germany). For ultramicroscopic examinations
the tissue blocks were trimmed and cut with
diamond knives (Diatome AG, Biel,
Switzerland) on an UC6 ultramicrotome (Leica
Microsystems, Wetzlar, Germany). The thin
sections were mounted on copper grids,
stained with uranyl acetate/lead citrate and
examined with a Philips CM 12 transmission
electron microscope (Philips/FEI, Amsterdam,
The Netherlands). For comparative histologi-
cal analysis of BAT, semi-thin sections of
Araldite embedded tissue samples were pre-
pared and stained with basic fuchsin and
methylene blue.  

Propidium iodide staining
Immediately after removal, the samples of

BAT were fixed in a 10% formaldehyde solution
at 4°C overnight and processed routinely for
embedding in paraffin. For the analysis of
chromatin condensation and apoptotic
changes of nuclei, 5 µm thick paraffin embed-
ded BAT sections were deparaffinized, rehy-
drated and dyed with propidium iodide for 10
min. After washing in distilled water, in order

to preserve fluorescence signal, the sections
were mounted in Mowiol solution (Poly -
sciences, Eppelheim, Germany) and examined
with Carl Zeiss LSM 510 confocal laser scan-
ning microscope (Carl Zeiss, Oberkochen,
Germany).

Immunohistochemistry
The BAT samples were fixed and embedded

in paraffin as previously described. A series of
5 µm thick sections were deparaffinized and
rehydrated, than incubated with 3% H2O2 in
methanol for 10 min at room temperature to
block endogenous peroxidase and followed by
three washes in phosphate buffered saline
(PBS; pH 7.4) of 5 min each. The sections were
incubated with polyclonal goat anti-TNF-α
antibody in PBS (dilution 1:200, Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA)
overnight at 4°C, followed by three 5 min PBS
washes. Immunodetection was assessed by the
Dako LSAB Universal Kit (Dako Scientific,
Glostrup, Denmark). After three PBS washes of
5 min each, sections were incubated with

0.012% H2O2 and 0.05% diaminobenzidine
(Sigma-Aldrich Chemie, Munich, Germany) in
PBS for 10 min in dark. The sections were
rinsed in distilled water, counterstained with
hematoxylin, mounted and examined with a
Leica DMLB microscope (Leica Microsystems,
Wetzlar, Germany).

Results

Ultrastructural study of capillaries in BAT of
hyperinsulinaemic rats revealed apoptotic ECs,
showing signs of nuclear and cytoplasmic con-
densation followed by the lightening and vac-
uolization of organelles, primarily mitochon-
dria (Figure 1). Macrophages closely posi-
tioned to these apoptotic cells were frequently
observed (Figure 1 A,B). The most frequent
changes in the altered ECs were at the nuclear
level. Unaltered capillaries of brown fat are
constituted of ECs with oval nuclei and more or
less abundant cytoplasm containing rare, small

Original paper

Figure 1. Endothelial cells apoptosis in brown adipose tissue of hyperinsulinaemic rats on
electron micrographs (A, B, and upper insertion A) and light micrograph (lower insert in
A). Signs of nuclear condensation, cytoplasmic degeneration and organelle vacuolization
are visible. Mph, macrophage; BA, brown adipocyte; n, nucleus. Scale bars: A) 1 µm; A,
upper insert), endothelial cell in BAT of control rat, 1µm; A, lower insert), light
microscopy of an apoptotic EC, 10 µm; B), 0.5 µm, enlarged area from micrograph A. 
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mitochondria (Figure 2A). In BAT of hyperin-
sulinaemic rats heterochromatization and lob-
ulation of ECs nuclei were observed (Figure
2B), and in some cases, chromatin appeared
completely condensed, wooly-like and sparsely
distributed in the cell (Figure 3). Besides dif-
ferent stages of chromatin condensation and
alterations, cytoplasmic modifications of apop-
totic ECs could also be observed. Thus, besides
condensation and, in some cases, vacuoliza-
tion (Figure 3) of endothelial cytoplasm, pro-
trusions of ECs into the capillary lumen were
also visible (Figures 3 and 4).

Propidium iodide staining (Figure 5 A,B)
revealed higher number of ECs nuclei hete-
rochromatization in BAT of insulin treated rats
in comparison with BAT of control animals
indicating high level of ECs apoptosis after
application of high dose of insulin.

TNF-α immunoreactivity was shown in
Figure 6. Small blood vessels in BAT revealed
stronger TNF-α immunopositivity in ECs of
insulin treated animals comparing with con-
trol groups, especially in chronically treated
animals. In addition, some of the brown
adipocytes, especially those in vicinity of TNF-
α non-positive blood vessels, were immunopo -
sitive.

Discussion

Our study demonstrates that hyperinsuli-
naemia induces apoptosis of ECs in rat BAT. In
both, acute and chronic treatment with  high
dose of insulin, we revealed increased number
of apoptotic ECs in BAT, showing signs of chro-
matin condensation, nuclear shape alter-
ations, cytoplasmic condensation, and apoptot-
ic bodies’ formation. The protrusions of apop-
totic ECs we observed (three to five per cell)
could be a sign that these damaged cells are
detaching from the internal elastic lamina at
an early stage of apoptosis and are discarding
into the capillary lumen. On the other side,
there are many cases of macrophage vicinity to
apoptotic ECs which indicate also the phago-
cytic way of their removal in BAT. Previous
study of our team has revealed cytotoxic effects
of chronic hyperinsulinaemia in BAT, indicat-
ing that apoptosis appears to be the mecha-
nism responsible for the loss of brown adipo-
cytes16 which was also shown in the brown
adipocyte culture.17 Also, high dose of insulin,
when applied chronically, leads to decrease in
BAT sympathetic innervation (our unpub-
lished data). 

From the present study it seems that ECs
apoptosis takes a part in BAT remodeling, at
least during exposure to high dose of insulin.
Combined elimination of brown adipocytes
and ECs, could be a mechanism responsible for
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Figure 2. Endothelial cells ultrastructure in brown adipose tissue of hyperinsulinaemic
rats: A), acute treatment; endothelial cell with euchromatic, oval nucleus, enclosing cap-
illary lumen (asterisk); B), chronic treatment; apoptotic endothelial cell with heterochro-
matic, lobulated nucleus and condensed cytoplasm. Scale bars: 1 µm.

Figure 3. Ultrastructure of apoptotic endothelial cells in brown adipose tissue of hyperin-
sulinaemic rat (chronic treatment). EC1, endothelial cell with condensed, sparsely distrib-
uted chromatic material and with numerous vacuoles (v); EC2, neighboring endothelial
cell also shows signs of apoptotic changes and organelle vacuolization, with protrusions
(arrowheads) into capillary lumen (asterisks); BA, brown adipocyte; no, nucleolus; ld,
lipid droplet. Scale bar: 1 µm.
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the constant cell ratio maintenance in BAT.8 In
general, adult tissues do not grow, their mass
is stable, and the supporting vasculature is
quiescent.30 Exceptio nally, adipose tissue can
grow and regress throughout adulthood. It is
highly vascularized and has angiogenic prop-
erties.31,32 The studies of Rupnick et al. demon-
strate that adipose tissue mass can be regulat-
ed through the vasculature.9 Recent studies
indicate that apoptosis is associated with the
involution of capillary networks.33-35 The circu-
latory network has the intrinsic capacity to
remodel itself to either increase or decrease
microcirculation vascularity depending on the
metabolic demands of the tissues, which is
especially true for the tissue with tremendous
plasticity such is BAT. The plasticity of the vas-
cularity is evident during ontogeny and is
maintained in both physiologic as well as
pathophysiologic circumstances.36-38

The physiological meaning of the proapop-

totic effect of insulin in BAT after long-term
treatment is unknown. Endothelial apoptosis
could affect thermogenic function of BAT by
decreasing capillary network capacity for sub-
strate intake and heat dispersion. Insulin is
thought to be internalized by the vascular ECs
via a receptor-mediated process, before it
reaches the perivascular space.39 This process
represents a potential rate-limiting step in
peripheral insulin action which can induce
delay in insulin-stimulated glucose metabo-
lism at least in some conditions of insulin
resistance.40-45 Namely, reduced expansion of
the capillary network, with attenuation of
microcirculatory blood flow to metabolically
active tissues, contributes to the impairment
of insulin-stimulated glucose and lipid metab-
olism by altering the transcapillary passage of
insulin.46 It could be proposed that common
cell death of brown adipocytes, as we described
earlier, and ECs, as we showed here, induced
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Figure 4. Ultrastructure of the endothelial cell cytoplasmic protrusion (arrowheads) into
capillary lumen (asterisks) in brown adipose tissue of hyperinsulinaemic rats: A), chron-
ic treatment; B), acute treatment; BA, brown adipocyte. Scale bars: 1 µm.

Figure 5. Propidium iodide stained sec-
tions of brown adipose tissue of control (A)
and insulin-treated rats (B, chronic treat-
ment). Condensed nuclei of endothelial
cells are denoted by asterisks; insert of B),
nuclear fragmentation and micronuclei
(arrowheads). Scale bars: 30 µm.

Figure 6. TNF-α immunoexpression in
brown adipose tissue of control (A) and
hyperinsulinaemic rats (B, chronic treat-
ment) reveals higher immunopositivity of
small blood vessels endothelial cells in
insulin-treated animals. Scale bars: 20 µm.
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by prolonged exposure to high dose of insulin,
might represent an important mechanism
involved in the reduction of BAT function in
those situations where insulin is continuously
present, such as diabetes type 2 or obesity. In
agreement with our proposal, it was shown in
murine model that partial ablation of BAT
leads to obesity, insulin resistance, and
decreased oxygen consumption.47,48 Also, in
humans, the amount of BAT is inversely corre-
lated with body-mass index, especially in older
people, suggesting a potential role of BAT in
adult human metabolism.49 Therefore,
although insulin is one of the most relevant
positive signals regulating BAT, prolonged
presence of high dose of insulin might have a
pathological effect that induces apoptotic cell
death and contributes to a loss of BAT mass
and function, resulting in a secondary insulin
resistance.

In addition to its classical metabolic effects
to promote fuel storage and stimulate glucose
oxidation, insulin has important non-metabol-
ic hemodynamic actions. Namely, insulin pro-
motes capillary recruitment, causes peripheral
vasodilatation and increases regional blood
flow.50-52 These vascular effects of insulin have
been interpreted as redistributing flow to a
nutritive network, providing increased access
for both nutrients and insulin itself to the tis-
sue bed.53 Our findings are in disagreement
with a large number of in vitro studies in
which insulin exerts beneficial effects on
endothelium by inhibiting apoptosis.54 The
study of Chai et al. demonstrated that low con-
centration of insulin (30 µU/mL) could
decrease apoptosis in cultured ECs, while high
concentration of insulin (3 U/mL) induces
time- and concentration-dependent apopto-
sis.55 Other studies also demonstrated detri-
mental effects of insulin on endothelial func-
tion which were fully evident only after 4 h of
hyperinsulinemia.56 Decreased microvascular
density and impaired capillary recruitment are
the cardinal findings of microvascular dysfunc-
tion affecting capillary perfusion and blood-
flow patterns. Microvascular dysfunction is
thought to contribute to obesity-associated
insulin resistance and hypertension and may
thus link central adiposity with cardiovascular
risk.57-60

Adipokines, such as TNF-α, have been
implicated in the relationship between micro-
circulation alterations and metabolic syn-
drome.61 It is already shown that insulin resist-
ance is associated with chronic inflammation
characterized by abnormal production of proin-
flammatory cytokines and acute phase reac-
tants62 by several cell types, such as adipocytes
and macrophages. Also, an increasing body of
evidence reveals accumulation of senescent
preadipocytes and ECs in the fat tissue of
obese and aging subjects, which generate

increased amount of cytokines and chemoki -
nes which appear to be capable of activating
immune responses.63,64 Several rodent studies
demonstrate that an increase in adipose tissue
macrophages worsens insulin sensitivity.65,66
The most recent study has shown macrophage-
induced apoptosis in both preadipocytes and
adipocytes mediated in a paracrine manner by
cytokine secretion during adipocyte inflamma-
tion in vitro.67 Our ultrastructural analysis of
BAT of hyperinsulinaemic rats showed closely
positioned macrophages to clusters of apoptot-
ic cells, usually containing few brown
adipocytes and ECs (adipo-endothelial clus-
ters). Cinti et al. also described macrophage
accumulation in the WAT of obese mice and
humans, especially alongside of moribund
adipocytes which was coincidental with
increased TNF-α gene expression.68 TNF-α is a
pluripotent, inflammatory cytokine, that
appears to elicit a large number of biological
effects in different cell systems, including the
induction of apoptosis in non-transformed
cells.69 It is also a principal cytokine involved in
EC apoptosis and its concentration increases
in pathological conditions, such as diabetes,
which initiate or exacerbate vascular endothe-
lial injury.70,71 However, the mechanisms of
TNF-α proapoptotic effects in the ECs of BAT
after hyperinsulinaemia treatment still remain
to be elucidated.  

Apoptosis of adipose tissue cells is relatively
poorly studied phenomenon and the mecha-
nism of apoptosis induced by high dose of
insulin in ECs of BAT is also obscure. However,
better understanding of the mechanisms that
affect adipose tissue mass, including apoptotic
cell death, is tremendously important for both
obesity-related diseases and conditions result-
ing in cachexia. Emerging evidence shows that
manipulation of adipose tissue neovascular-
ization by angiogenic stimulators and in-
hibitors affect the expansion and metabolism
of fat mass by regulating the growth and re-
modeling of the adipose tissue vasculature and
might therefore offer a novel therapeutic
option for the treatment of obesity and related
metabolic disorders.72 Although it is not proven
at this time, the available data point to
endothelial apoptosis as the final common
pathway through which various insults could
contribute to the development of certain dis-
eases. The mechanistic links between struc-
tural and functional alterations in BAT micro-
circulation and metabolic syndrome are com-
plex and remain under discussion. Bearing in
mind that hyperinsulinaemia and insulin
resistance are among the major causes of
metabolic disorders, such as obesity and type 2
diabetes, each of them characterized by endo-
thelial dysfunction, which is a key manifesta-
tion in cardiovascular pathologies,73 investiga-
tion of insulin induced ECs apoptotic changes

in such a plastic and metabolically active tis-
sue like BAT is of great significance, and one
of our future goals is the elucidation of this
process. 
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