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Abstract 

Machine perfusion at subnormothermic
temperature (20°C), MP20, was developed by
Vairetti et al. and showed to afford a better
preservation of fatty livers respect to tradi-
tional cold storage (CS) in terms of enzyme
release into the perfusate, bile production,
glycogen stores, energy charge and oxidative
stress. Here we investigated whether it also
caused decreased cell death by apoptosis.
Fatty and lean Zucker rats were submitted to
MP20 or CS for 6 h and reperfused normoth-
ermically for 2 h. Apoptotic cells were
revealed by immunohistochemistry of activat-
ed caspase-3 and M30 (new epitope on CK18
degraded by caspase-3) and by the TUNEL
assay. Portal pressure was also determined. A
statistically significant reduction of hepato-
cyte apoptosis, but especially of sinusoidal
cells was determined for fatty livers submitted
to MP20 respect to CS. Portal pressure was
significantly lower after MP20 respect to CS.
The reduction of sinusoidal cell death by
apoptosis without need for anti-apoptotic
therapies appears particularly positive since
apoptotic sinusoidal cells hinder microcircu-
lation in the sinusoids and are thrombogenic.
These results further confirm the potential of
MP20 for preserving fatty livers that would be
otherwise discarded as grafts, and thus for
increasing the donor pool for liver transplan-
tation.

Introduction

The scarcity of organs for transplantation
compels to consider the use of marginal
organs, in particular of those containing fat,

due to alcohol or obesity.1 Fatty grafts are
more vulnerable to ischemia-reperfusion
(I/R) injury than normal livers, and their use
has been associated with an increased preva-
lence of primary non-function or dysfunction
after transplantation.2-4 Fatty livers (FL) are
more liable to I/R injury than normal ones
mainly due to increased lipid peroxidation,5

neutrophil infiltration,6 and Kupffer cells acti-
vation,7,8 microcirculatory alterations,9-11

mitochondrial dysfunction with a lower
adenosine triphosphate (ATP) production,12,13

and increased sensitivity to oxidative
stress.14,15

These data reveal how difficult it is to pro-
tect steatotic livers from I/R injury. Most
strategies for reducing damage during acute
stress conditions to FL are still in the experi-
mental stage, and are not clinically applica-
ble. Hypothermic machine perfusion (MP)
has shown to improve FL preservation com-
pared with cold storage (CS): bile production,
ammonia clearance, urea production, oxygen
consumption, and ATP levels were signifi-
cantly higher after MP, compared with CS.16

Our group has developed a machine perfusion
system with recirculation of an oxygenated
medium at 20°C (MP20): ATP levels, energy
charge, ATP/ADP ratio and bile production,
were higher and nitrate/nitrite (NOx) con-
centration lower, in FL submitted to MP20,
respect to CS. Moreover, oxidative stress,
tumour necrosis factor (TNF-α), caspase-3
activity, and biliary alkaline phosphatase
release, were lower in FL preserved by
MP20.17,18 We have also shown a better preser-
vation of FL by MP20, respect to CS, in terms
of morphology, glycogen stores and reactive
oxygen species (ROS) production.17

A key feature of I/R in the liver is apoptosis,
but little is known about the mechanisms of
cell death in FL after CS, and the few available
information is controversial. Some authors
observed predominant necrotic forms of
hepatocyte death after warm I/R.19-21

Baskin-Bey et al. found that hepatocyte
apoptosis predominated in steatotic grafts
after cold ischemia-warm reperfusion,22

whereas Fernandez et al. using a different
animal model, did not observe apoptosis in
steatotic livers undergoing transplantation,
after cold preservation-warm reperfusion.15

As cold I/R is concerned, disagreeing observa-
tions have been made, that might be related
to different experimental settings, such as
the duration of cold ischemia or the different
animal models.15,22,23 In particular, cathepsin-
dependent hepatocyte death by apoptosis was
determined in cathepsin B knockout mice, fed
with a methionine/choline deficient diet,
after 24 h of cold preservation with University
of Wisconsin (UW) solution and 1 hour warm
reperfusion.22 By contrast, no apoptosis was

identified in Zucker rat liver preserved with
UW solution for 6 h and reperfused for 4 h,15

whereas both apoptotic and necrotic cell
death was identified in experiments where
fatty Zucker rat livers preserved for 6 h with
UW solution were transplanted in lean ani-
mals.23

We investigated the response of FL to
MP20, respect to CS, in terms of cell death by
apoptosis. We used the terminal deoxynu-
cleotidyl transferase-mediated deoxyuridine
triphosphate nick-end labeling (TUNEL)
assay, which identifies apoptosis in all kinds
of cell type, by detecting the late events when
major DNA fragmentation occurs.24 However,
DNA fragmentation does not appear in all
apoptotic cells25 and the extent of apoptosis
may be overestimated using TUNEL method,
since DNA degradation also occurs during
necrosis because of the release of nucleases
from infiltrating inflammatory cells.26-27

Therefore, we also investigated the expres-
sion of activated caspase 3 and of the neo-epi-
tope M30, specific to the Asp396 caspase
cleavage site of cytokeratin 18 (CK18) not
expressed by viable or necrotic cells.28-29

Proteolytic cleavage of cytokeratin 18 during
apoptosis takes place before the disruption of
cell membrane asymmetry, and before the
occurrence of DNA strand-breaks. CK18 is
expressed by hepatocytes and bile duct
cells,30-31 but not by sinusoidal lining cells
(SLC).
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Materials and Methods

Chemicals
Unless otherwise mentioned, all chemicals

were of the highest purity available and were
purchased from Sigma (Milano, Italy).

Animals
Homozygous (fa/fa) obese male Zucker rats

(11-12 week old, 375±15 g; Charles River,
Italy) were used as models of FL32 and het-
erozygous (fa/-), lean animals (300±10 g)
were used liver donors. The animals had free
access to water and food. The use and care of
animals in this study were approved by the
Italian Ministry of Health and by the University
Commission for Animal Care. Rats were anes-
thetized with sodium pentobarbital (40 mg/kg
i.p.) and received 250 units of heparin via the
inferior vena cava. The bile duct was cannulat-
ed (PE-50), an intravenous catheter (16-
gauge) was inserted into the portal vein. The
liver was washed out with an oxygenated
Krebs-Henseleit (KH) medium containing in
mmol/L: 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2
KH2PO4, 1.25 CaCl2, 25 NaHCO3, 20 HEPES
(pH 7.4), 5 glucose and 5 N-acetyl-cysteine
(NAC) pH 7.4 (4 mL/min/g of liver) and
removed.32 Samples of control livers were
obtained from lean and obese rats immediate-
ly after washout. 

Machine perfusion 
The liver was placed in an organ chamber,

and was connected to re-circulating standard
perfusion equipment containing 200 mL KH
medium for 6 h. The KH solution was recirculat-
ed by a roller pump (Gilson Minipuls-3), oxy-
genated and maintained at 20°C by a heat
exchanger (Julabo-F12). The perfusion solution
was oxygenated by a glass oxigenator, resulting
in a pre-hepatic oxygen concentration of 500 to
600 mmHg, and in post-hepatic concentration of
about 120 mmHg at 37°C. During MP at 20°C
the pre-hepatic oxygen concentration was 550
to 650 mmHg, and the post-hepatic concentra-
tion about 450 mm Hg at 37°C. The perfusate
ran freely via the suprahepatic caval vein into
the organ chamber, and was immediately re-cir-
culated by the roller pump into the reservoir. Air
emboli were removed from the system by a bub-
ble trap. The portal venous pressure was contin-
uously measured throughout the perfusion by
means of a water column connected to the por-
tal vein inflow catheter. Pre-calibration was per-
formed each time just before connecting the
liver to the circuit. At the end of MP preserva-
tion we started normothermic reperfusion by
switching to a reservoir containing fresh solu-
tion at 37°C. 

Cold storage 
After washout with KH, the livers were

flushed in situ with UW for 2 min and main-
tained at 4°C in this solution for 6 h. After CS,
livers were washed out of the storage solution
by discarding the initial effluent in a non-cir-
culating system with 20 mL KH at 37°C then
subjected to recirculating reperfusion with KH.

Normothermic reperfusion
Reperfusion with KH (2 h at 37°C) was per-

formed in the same set up as MP, both in MP and
CS preserved livers. The portal venous pressure
(in mmHg) was monitored by a water column
connected to the portal vein inflow catheter. Pre-
calibration was performed each time just before
connecting the liver to the circuit. 

Morphology and immunohisto-
chemistry

Liver pieces were rapidly removed after nor-
mothermic reperfusion, fixed in 2% p-
formaldehyde in 0.1 M phosphate buffer at pH
7.4 for 24 h and processed routinely until they
were embedded in Paraplast wax.

Sections were cut at 5 μm and stained with
Hematoxylin and Eosin (H&E) for histological
examination.

Electron microscopy
Samples of the liver were quickly removed,

and small fragments were fixed by immersion
in 2.5% glutaraldehyde in 0.13 M Millonig
buffer (pH 7.2-7.4) at 4°C for 4 h, rinsed, post-
fixed with 1% osmium tetroxide at 4°C for 2 h,
washed, dehydrated through graded concentra-
tions of alcohol, and embedded in Epon.
Ultrathin sections were stained with uranyl
acetate for 7 min and lead citrate for 2 min,
coated with carbon, and observed with a Zeiss
EM 900 electron microscope operating at 80 kV.

Activated Caspase-3
Paraffin sections of 6μm thick were cut and

deparaffinized in xylene and rehydrated with
graded ethanol and water. Antigen retrieval was
performed bringing slides to a boil temperature
by microwave in 10 mM citric acid buffer (pH
6), then maintained at a sub-boiling tempera-
ture (100 W) for 10 min. After cooling, aspecific
antibody binding was blocked for 1 h in PBS
with 10% normal goat serum, 3% bovine serum
albumin, and 1.5% NaCl. To avoid aspecific
background a further block was performed in
PBS with 5% powder milk and 1.5% NaCl for 30
min. Primary anti cleaved caspase-3 antibody
(Cell Signalling Technology, Beverly, MA, USA)
was applied at a dilution of 1:100 in the blocking
solution and incubated overnight at 4°C in a
moist chamber. After rinsing with PBS, a perox-
idase-conjugated secondary anti-rabbit anti-
body (Dual link EnVision System, Dako,

Glostrup, Denmark) was applied to the sections
for 30 min at room temperature. After rinsing
with PBS, the liquid 3,3-diaminobenzidine chro-
mogen system (DAB; Dako) was used to visual-
ize the secondary antibody for 5 min. The slides
were counterstained with Mayer’s Hematoxylin.

M30
Paraffin sections of 6 μm thick were cut and

deparaffinized in xylene and rehydrated with
graded ethanol and water. Antigen retrieval
was performed by microwave treatment with a
pre-heated 10 mM citric acid buffer (pH 6) by
incubation in a microwave oven at 100 W for 20
min, according to the manufacturer's instruc-
tions. After cooling, aspecific antibody binding
was blocked for 1 h in PBS with 10% normal
goat serum, 3% bovine serum albumin, and
1.5% NaCl. Primary M30 CytoDeath antibody
(Peviva, Gromma, Sweden) was applied at a
dilution of 1:100 in the blocking solution and
incubated overnight at 4°C in a moist cham-
ber. After rinsing with PBS, a peroxidase-con-
jugated secondary anti-rabbit antibody (Dual
link EnVision System; Dako) was applied to
the sections for 30 min at room temperature.
After rinsing with PBS, the liquid 3,3-
diaminobenzidine chromogen system (DAB;
Dako) was used to visualize the secondary
antibody for 5 min. The slides were counter-
stained with Mayer’s Hematoxylin.

Terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labelling method
(TUNEL)

Paraffin sections 6-μm-thick were collected
on poly-L-lysine-coated glass slides, and the
nuclear DNA fragmentation of apoptotic cells
was labeled in situ with the ApopTag
Peroxidase in situ Apoptosis Detection Kit
(Intergen Co. Purchase, NY, USA). Briefly, the
sections were deparaffinized and treated with
20 mg/mL proteinase K (Boehringer,
Mannheim, Germany) for 15 min. After rinsing
with distilled water, the sections were treated
with 3% hydrogen peroxide in 10% methanol
for 15 min. The sections then were washed
with distilled water and incubated in the pro-
vided equilibration buffer for 10 min. The sec-
tions were incubated with terminal deoxynu-
cleotide transferase (TdT) in the provided
reaction buffer with digoxigenin-dUTP, in a
humidifier chamber at 37°C for 1 h. The incor-
porated digoxigenin-dUTP was detected by
peroxidase-conjugated antidigoxigenin anti-
body and the signal developed by incubation
with 3,3-diamino-benzidine (DAB) in the pres-
ence of H2O2. The slides were counterstained
with Hematoxylin.

Apoptosis quantification and sta-
tistical analysis

Immunohistochemical sections were exam-
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ined by light microscopy (Zeiss Axioskop 2
Plus light microscope (Carl Zeiss Micro -
imaging, Jena, Germany) and apoptotic cells
counted. Ten high-power fields (x 400) for
each animal were selected on the basis of the
best preserved tissue areas (n=5 each treat-
ment). Peripheral areas of tissue sections
were not considered. Immunoreactivity was
expressed as percentage of stained cells, calcu-
lated by dividing the number of stained nuclei
by the total number of hepatocytes in any given
zone. Statistical analysis was performed using
SPSS 13.0 statistical software. General Linear
Model, univariate, was used to compare sets of
data, with significant differences at P<0.05. 

Results

Morphology - light and electron
microscopy

Morphological observation of control Zucker
lean rat liver showed no evidence of steatosis.
There were no substantial differences in mor-
phology after CS compared with MP20, and the
parenchyma was well-preserved after both
treatments (not shown). 

Control obese animals showed severe
micro- and macrovescicular fatty infiltration in
hepatocytes, mainly in the midzone (MZ) (not
shown;18). In FL submitted to CS, the parenchy-
ma was highly damaged, especially in the MZ
and centrolobular region (CL) where sinusoids
appeared markedly dilated and hepatocyte bal-
looning and necrosis were frequent (not
shown). By contrast, when FL were submitted
to MP20, the parenchyma was much better pre-
served, the sinusoidal structure was normal,
macrosteatosis and vacuolar degeneration of
hepatocytes much less abundant, and necrosis
was never observed. The analysis of liver ultra-
structure further supported the observations.
In particular, for FL submitted to MP20, most
endothelial cells appeared normal with well-
developed cytoplasmic processes lining the
sinusoid, and without any morphologic evi-
dence of apoptosis. Apoptotic cell morphology
was rare in control lean and fatty livers. 

On the contrary, CS-preserved FL liver
showed frequent SLC apoptosis, in particular
of cells with the typical morphology of endothe-
lial, stellate and Kupffer cells (Figure 1).
Hypothermic injury to sinusoidal endothelial
cells, detachment from the basal lamina,
rounding and loss of cytoplasmic processes,
were observed. Kupffer cells phagocyting apop-
totic bodies were recorded. By contrast, when
FL was preserved by MP20, the hepatocytes
ultrastructure was less damaged and fewer
apoptotic cells were observed. 

Original paper

Figure 2. Hepatocytes and SLC death quantified as the percentage of caspase-3 positive
cells/ total cells, in 10 random microscopic high-power fields (x40 objective). Statistically
significant decrease of apoptotic hepatocytes and SLC after MP20 respect to CS was
observed for obese Zucker rat liver (a), but not for the lean one (b). Values (%) are report-
ed as mean (5 rats each group) ± standard error; *P<0.05.

Figure 1. Representative transmission electron micrographs of apoptotic parenchymal
and sinusoidal cells in the liver of obese Zucker rats submitted to conventional cold stor-
age (CS) or to Machine Perfusion at 20°C (MP20). a), MP20: ultrastructure of an apop-
totic binucleated hepatocyte (bHep) with condensed chromatin margination surrounded
by dilated nuclear envelope in both nuclei; well-preserved mitochondria, endoplasmic
reticulum and storage material (glycogen rosettes and lipid droplets); scale bar: 1.1 µm.
b), CS: ultrastructure of an early apoptotic cell with typical sinusoidal endothelial cell
morphology (End). In sharp contrast with MP20 preservation (a), the nearby hepatocyte
(Hep) contains swollen, poorly-contrasted mitochondria; scale bar: 1.7 µm. c), CS: ultra-
structure of an apoptotic sinusoidal cell containing lipid droplets and thus presumed to
be a stellate cell (Stel). As in b) the neighboring hepatocytes (Hep) contain packed and
swollen mitochondria, lipid droplets and intracytoplasmic edema; scale bar: 1.7 µm. d),
CS: ultrastructure of an advanced-stage (karyorrhexis) apoptotic Kupffer cell (Kupf); a
nearby sinusoidal cell with abundant rough endoplasmic reticulum and lipid-rich cyto-
plasm (Stell) and the cytoplasm of a hepatocyte (Hep) with abundant microvilli in the
interhepatocyte recess, can also be recognized; scale bar: 1.7 µm.Non
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Immunodetection of cleaved 
caspase-3 

A statistically significant decrease of apop-
totic hepatocytes and SLC (P<0,05) after MP20
respect to CS was observed for obese Zucker
rat liver, but not for the lean one (Figure 2 a,b).
In fatty and lean control livers only few hepato-
cytes and SLC were positive (Figure 3 a,d).
Single positive cells were located mainly in the
MZ area both after CS or MP20 (Figure 3
b,c,e,f). 

Immunodetection of M30 antigen
A statistically significant decrease of early

apoptotic hepatocytes (P<0.05) after MP20
respect to CS was observed, for both lean and
obese Zucker rats (Figure 4 a,b). In fatty and
lean control livers minimal M30 staining was
present (Figure 5 a,d). After both CS and
MP20, M30 positive hepatocytes were mainly
located in the periportal (PP) and MZ regions.
They showed a granular cytoplasmatic staining
pattern (Figure 5 b,c,e,f). Most M30-positive
cells did not present obvious apoptotic nuclear
morphological features, thus supporting the
suggestion that immunohistochemical detec-
tion of M30 marks an early event in the apop-
totic process.

TUNEL reaction
A statistically significant decrease of apop-

totic hepatocytes and SLC (P<0,05) for obese
Zucker rat was observed after MP20 respect to
CS (Figure 6a). In lean animals a similar
decrease was observed only for SLC (Figure
6b). Few hepatocytes and SLC were positive to
TUNEL staining in control lean and obese liv-
ers (Figure 7 a,d). Both after CS or MP20,
TUNEL-stained cells were located mainly in PP
and MZ area (Figure 7 b,c,e,f).

Portal pressure
Steatotic livers preserved by CS exhibited a

gradual and time-dependent pressure increase
(Figure 8a). Conversely, FL preserved by MP at
20°C even at the end of reperfusion showed
lower pressure values, similar to those
observed in livers obtained from lean rats, for
which the time-dependent increased pressure
was negligible (Figure 8b).

Discussion

In this study we further strengthen the
working hypothesis that MP20 is a better strat-
egy to protect steatotic livers than convention-
al CS. We have shown in previous reports that
not only normal livers17 but especially FL, sub-
mitted to subnormothermic machine perfusion

(MP20) exhibit a marked damage reduction,
evaluated as enzyme and cytokine release,
excretory function, energy recovery and oxida-
tive stress.17,18 Here we show that MP20 also
protects FL from apoptotic cell death. In partic-
ular we found a significant reduction of apop-
tosis of hepatocytes and especially of SLC in FL
preserved for 6 h with MP20 and reperfused
respect to livers preserved by CS.

Apoptotic SLC and hepatocytes were more
numerous in the PP zone of both CS and MP20
treated livers. The mechanism of the predomi-
nance of apoptosis in the PP zone is still

unclear. Although PC regions have lower oxy-
gen tensions than PP areas, which may sug-
gest that they would be more susceptible to
hypoxic damage, I/R injury is different from
hypoxic injury and it has been shown that
hepatocytes with lower resting oxygen ten-
sions may be more resistant to reperfusion
injury.33 Oxidative stress was demonstrated to
cause hepatocyte apoptosis mainly in PP and
MZ areas.34-36 Our group too has previously pre-
sented evidence for ROS reaction with a lobu-
lar zonation, decreasing from PP to PC hepato-
cytes.17 This could explain the prevalence of

Original paper

Figure 3. Representative light photomicrographs of caspase-3 stained sections from liver
of lean (a-c) and obese (d-f ) Zucker rats. In control lean (a) and obese (d) livers only few
hepatocytes (arrow heads) and SLC (arrows) were caspase-3 positive. Both in lean and
obese livers after CS (b, e) or MP20 (c, f ), positive cells were located mainly in the MZ
area. CL, centrolobular vein; P, portal vein. Scale bar: 50 µm. 

Figure 4. Apoptotic hepatocytes were quantified as the percentage of M30 positive cells/
total cells, in 10 random microscopic high-power fields (x40 objective). A statistically sig-
nificant decrease of early apoptotic hepatocytes after MP20 respect to CS, both for obese
(a) and lean (b) Zucker rat, was found (a, b). Values (%) are reported as mean (5 rats for
each group) ± standard error; *P<0.05.
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apoptotic hepatocytes in the PP area. A further
explanation could be the different mitochondr-
ial components and enzyme contents of PP and
PC zones.37

Damage to SLC may be a major component
of graft dysfunction after I/R injury, and since
apoptosis is a major cause of SLC loss after I/R,
limiting apoptosis may provide one therapeu-
tic approach.38 Several studies established that
in non-steatotic liver SLC are more injured
than hepatocytes by cold preservation, also in
terms of apoptotic cell death.39-43 The SLC
remain viable upon oxygenated reperfusion of
the graft but die rapidly thereafter in reim-
planted grafts.44 Low temperature preservation
causes injury to SLC, such as alteration of the
extracellular matrix and cytoskeleton,40,45

detachment endothelial cells with loss of cyto-
plasmic processes lining the sinusoids46,47 and
possibly Kupffer cell activation.48 SLC of FL are
more prone to lose their viability after CS than
those of normal liver.49 Damage of SLC can lead
to impaired sinusoidal flow through adhesion
and activation of circulating leukocytes,9

platelet activation,50 and ultimately a second-
ary injury to hepatocytes causing organ non-
function or dysfunction after transplantation.51

In our study, apoptosis was observed mainly
in SLC (sinusoidal endothelial cells, Kupffer
cells, and stellate cells, as demonstrated by
electron microscopy) and it was significantly
higher in FL after CS respect to MP20.
Probably, after CS apoptosis occurs during
reperfusion, since it cannot occur in a milieu
with low oxygen tension.52 Indeed, although
some components of SLC injury already occur
during the preservation process,53 SLC apopto-
sis is an active process that requires ATP as
energy supply and the release of mediators
such as TNF-α,54,55 or the elevation of ATP lev-
els; the latter are lowered in ischemic livers.56

The reduction of SLC apoptosis revealed by
caspase-3 expression and by the TUNEL assay,
is in keeping with our previous biochemical
data. Indeed, we have previously shown that
MP20 greatly reduced TNF-α release as com-
pared to CS, suggesting Kupffer cell protection
when using subnormothermic temperature.17

The relevance of this protection is correlated to
a reduction in the first source of ROS during
reperfusion, thus limiting oxidant stress to
hepatocytes. A further factor recognized as
major mediator of apoptosis is oxidative
stress.57,58 We indeed reported a higher abun-
dance of ROS-positive sinusoidal cells for CS
than for MP20.17 Finally, we also previously
reported that caspase-3 activity, evaluated by p-
nitroaniline release, was lower with MP20
than with CS, thus confirming the reduction of
apoptotic cell death.17

The reduction of apoptotic cells is impor-
tant, since damaged SLC can exacerbate
microcirculatory disturbances of FL59 and

microcirculatory impairment has been impli-
cated as an important mechanism in steatotic
liver injury after transplantation.7,10 Reduced
SLC apoptosis likely improves sinusoidal flow
during reperfusion, decreases no-reflow phe-
nomenon and leads to a reduction in secondary
ischemic insults produced by flow distur-
bances.60 During reperfusion after MP20, we
found a statistically significant decrease of
portal pressure, respect to CS-preserved livers.
The improvement of the flow in the sinusoids
for FL preserved by MP20 can also be ascribed

to the action of N-Acetylcysteine (NAC) includ-
ed in the perfusion medium. NAC is not only a
precursor of glutathione, therefore contribut-
ing to the protection against oxidative dam-
age,61,62 but it also has vasorelaxant effects.63,64

Adding NAC to the liver before CS caused an
amelioration of sinusoidal microcirculatory
injury after cold I/R in steatotic rat liver.6

It is not possible to establish from the pres-
ent data whether the damage to sinusoidal
cells was caused by increased portal pressure
or vice versa. It can be speculated that the IR
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Figure 5. Representative light photomicrographs of M30 stained sections from liver of lean
(a-c) and obese (d-f ) Zucker rats. In lean (a) and obese (b) control livers minimal M30 stain-
ing was present. Both in lean and obese livers after CS (b,e) or MP20 (c,f ), anti-M30 posi-
tive hepatocytes were mainly located in the PP and MZ regions and they showed a granular
cytoplasmatic staining pattern. CL, centrolobular vein; P, portal vein. Scale bar: 50 µm. 

Figure 6. Hepatocytes and SLC death were quantified as the percentage of TUNEL positive
cells/ total cells, in 15 random microscopic high-power fields (x40 objective). Statistically
significant decrease of apoptotic hepatocytes and SLC after MP20 for obese Zucker rat was
observed respect to CS (a). The same was observed in lean animals only for SLC (b). Values
(%) are reported as mean (5 rats for each group) ± standard error; *P<0.05.
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damage after CS/reperfusion is the triggering
cause for SLC apoptosis, and that the morpho-
logical changes of apoptotic cells hinder flow
through the sinusoids thus contributing to
increased portal pressure and initiating a
vicious cycle of damage to the parenchyma.

Furthermore, limiting apoptosis is impor-
tant, since apoptotic cells can be thrombo-
genic. Indeed, it has been demonstrated that

apoptotic cells express phosphatidylserine on
the cell surface membrane, essential for both
thrombin generation and Tissue Factor (a pro-
coagulant) activation.65 Finally, the decrease of
apoptotic SLC is important, since the regener-
ation of these cells is more difficult than that
of hepatocytes because it needs the mobiliza-
tion of bone marrow precursors.66 Although the
most relevant effect is the reduction of SLC

apoptosis after MP20 respect to CS, also the
decrease in hepatocyte death deserves men-
tioning since CS caused anyway early apoptot-
ic features (expression of activated caspase 3
and M30) of parenchymal cells.  Reducing both
SLC and hepatocytes apoptosis is crucial in
cases of mild or moderate steatosis. Results
from recent clinical studies in humans and in
animal models of steatosis suggest that the
inhibition of apoptosis by ischemic precondi-
tioning,15,67,68 or by pharmacological strategies
protect against I/R injury.21

In conclusion, MP20 provides protection to
FL, not only by significantly reducing hepatic
enzymatic leakage, hepatic steatosis, and by
increasing energy metabolism recovery during
reperfusion,17 but also by reducing significant-
ly SLC and hepatocyte apoptosis, thus poten-
tially improving the quality of liver grafts with-
out need of further protective strategies. These
findings have important clinical implication
since MP20 can render steatotic donor livers
useable for transplantation.
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