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Abstract

Calpains are Ca2+-dependent proteases able
to cleave a large number of proteins involved
in many biological functions. Particularly, in
skeletal muscle they are involved in meat ten-
derizing during post mortem storage. In this
report we analyzed the presence and expres-
sion of µ- and m-calpains in two skeletal mus-
cles of the Marchigiana cattle soon after
slaughter, using immunocytochemical and
immunohistochemical techniques, Western
blotting analysis and Casein Zymography.
Therefore, the presence and the activity of
these proteases was investigated until 15th day
post mortem during normal process of meat
tenderizing. The results showed m- and µ-cal-
pain immunosignals in the cytoplasm both
along the Z disk/I band regions and in the form
of intracellular stores. Moreover, the expres-
sion level of µ-calpain but not m-calpain
decreased after 10 days of storage. Such a
decrease in µ-calpain was accompanied by a
gradual reduction of activity. On the contrary,
m-calpain activity persisted up to 15 days of
post mortem storage. Such data indicate that
expression and activity of both µ-calpain and
m-calpain analyzed in the Marchigiana cattle
persist longer than reported in literature for
other bovines and may be related to both the
type of muscle and breed examined. 

Introduction

Calpains are a large family of intracellular
cysteine proteases. To date, 14 members have
been identified, which are expressed in an
ubiquitous or tissue-specific manner.1,2 In
skeletal muscle, the calpain system consists of
three proteases, ubiquitously expressed iso-

forms µ-calpain, m-calpain, and p94 (or cal-
pain 3). The terms µ-calpain and m-calpain
refer to the micromolar Ca2+-requiring (µ-cal-
pain) and millimolar Ca2+-requiring (m-cal-
pain) proteases, respectively.3,4 Both proteases
are heterodimers, each one composed of a 80
kDa catalytic subunit and a 28 kDa regulatory
subunit. The 28 kDa subunit is identical in
both the µ- and m-calpains. Both the 80 kDa
and the 28 kDa subunits undergo auto-proteol-
ysis from the N-terminus resulting in the con-
version of the 80 kDa subunit into a 76 kDa
form through a 78 kDa intermediate.5 In both
µ- and m-calpains the 80 kDa subunit is divid-
ed into four domains based on the amino acid
sequence: domain I or NH2-terminal domain;
domain II; domain III that contains two poten-
tial EF-hand Ca2+ binding sequences, one at
the domain II/III boundary and one at the
domain III/IV boundary; and domain IV which
contains four sets of sequences that predict
EF-hand Ca2+ binding sites.2 Associated with
the calpain proteolytic enzyme family is the
calpain-specific endogenous inhibitor, calpas-
tatin.1,6 Calpastatin contains 4 inhibitory
domains, each one capable of inhibiting cal-
pain activity. 

Recently, some research groups have identi-
fied calpastatin genes polymorphism and have
shown that some of them are predictive of car-
cass quality in cattle and in pigs.7-9

Additionally, there are markers within the cal-
pastatin and µ-calpain genes that are able to
identifying beef cattle with the genetic poten-
tial to produce tender meat.10,11 The calpain-
calpastatin system has different yet crucial
roles in the cell. During embryo development,
the knockout of both µ- and m-calpain is
lethal.11,12 Such proteases are able to cleave a
large number of proteins both in vitro and in
vivo. They act on cytoskeletal proteins, espe-
cially those involved in cytoskeletal/plasma
membrane interactions,13-17 on some transcrip-
tion factors18-21 and so they are involved in the
cell cycle,22-24 regulation of gene expression25-27

and apoptosis.28-32 Particularly, the calpains-
calpastatin system brings about cytoskeletal
damage and membrane disruption in muscle
cells. In this manner, it is involved in the
pathogenetic mechanism of muscular dystro-
phy33,34 in living animals and in meat tender-
ness.35

In striated muscles, after death, the calpains
rapidly cleave titin and nebulin at sites near
the Z-disk, thereby severing their attachment
to the proteins in the Z-disk. In addition, the
calpains cleave the intermediate filament pro-
tein desmin that attaches the Z-disk to the sar-
colemma; hence, the proteins constituting Z-
disk, including α-actinin, are released, and the
Z-disk disappears leaving a space in the
myofibril.1,36,37 The calpains also rapidly cleave
T and I troponins and tropomyosin, and C-pro-
tein,36-38 which contribute to the stability of the
thin and thick filaments, respectively. Calpains

cleave myosin and actin, the two major pro-
teins in striated muscle, very slowly, if at all.39

Some ultrastructural analyses reveal µ-calpain
immunoreactivity in the bovine skeletal mus-
cle within sarcomeres, essentially at the center
of the I-band and at the periphery of Z-lines,40

where it co-localize with myotilin, an alpha-
actinin, gamma filamin binding protein found
in the Z-band edges. In the bovine skeletal
muscle induced by conditioning and high-pres-
sure treatment, the calpain localization was
two times greater in both the I-band/Z-disk and
A-band in the muscle immediately after thaw-
ing than after 7 days.41 In light of the crucial
role played by calpains on meat tenderness, the
aim of this study was to analyze the presence
and expression of µ- and m- calpains in the
skeletal muscle of the Marchigiana cattle soon
after slaughter and during aging, using
immunocytochemical and immunohistochemi-
cal techniques and Western blotting analysis.
Moreover, Casein Zymography was performed
to consider the proteolitic activity of µ- and m-
calpain during aging in the skeletal muscle of
this cattle breed. 

For this study, we have chosen the
Marchigiana cattle for its commercial interest
and meat quality. The meat of this animal is a
PGI (Protected Geographical Indication) prod-
uct and the name of the trade mark is Vitellone
Bianco dell’Appennino Centrale. 

Materials and Methods

Animals and tissue preparation
Samples of masseter and diaphragm mus-

cles were collected from ten males 24-month-
old Marchigiana cattle obtained from a local
slaughterhouse (Campolattaro, Benevento,
Italy). The animals were born and farmed in
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the province of Benevento (Italy) and their
meat was intended for human consumption.
Sampling was made immediately after death.
Cubic fragments of 1 cm of length underwent
different treatments for immunohistochem-
istry and scanning electron microscopy (SEM)
analysis. For immunohistochemistry, muscle
samples were submerged in 2-metilbutane,
extra pure (Acros Organics, NJ, USA) for 5 sec-
onds and then frozen in liquid nitrogen before
being cut at the cryostat. For immunogold-
labeling SEM analysis, specimens were sub-
merged in PBS for 1 h at room temperature
(RT). Additional muscle samples were stored
at 4°C, collected and frozen (-80°C) at 0, 5, 10
and 15 days post-mortem for Western blotting
analysis and Casein Zymography. 

Immunohistochemistry
Frozen samples of masseter and diaphragm

muscles were serially cut at a cryostat in trans-
versal and longitudinal sections of 10 mm.
After blocking endogenous peroxidase activity
with 0,3% hydrogen peroxide for 20 min at RT,
the sections were rinsed in 0.01 M phosphate
buffered saline (PBS), pH 7.4, for 15 min.
Primary antibodies were monoclonal antibod-
ies raised in mouse against the domain III/IV
of m-calpain (C-268; Sigma, Sant Louis, MO,
USA) and polyclonal antibodies raised in rabbit
against domain IV of µ-calpain (C-5611;
Sigma). Primary antibodies were diluted 1:50
and applied on the sections overnight in a
moist dark chamber at 4°C. The other compo-
nents of the immunological reaction were con-
tained in the Envision Dako (K4006,
DakoCytomation, Glostrup, Denmark)
employed with mouse antibodies and
Vectastain Elite ABC Kit (PK-6101; Vector
Laboratories Inc., Burlingame, CA, USA)
employed with rabbit antibodies. The final
staining was performed using a solution of 3-3’
diaminobenzidine tetrahydrocloride (DAB;
Sigma) of 10 mg in 15 mL 0.5M Tris buffer, pH
7.6, containing 0.03% hydrogen peroxide. The
images of the immunostainings were acquired
and photographed using the microscope Leica
DMRA2 (Leica, Wetzlar, Germany) equipped
with a DC300F digital camera.

Negative controls were obtained substitut-
ing the primary antisera with PBS or normal
serum in the specific step, or alternatively, by
absorbing each primary antiserum with an
excess of the relative peptide (100 µg of pep-
tide/mL of diluted antiserum).

Immunogold-labeling SEM analysis
Samples were incubated for 2 h in a solution

containing normal goat serum (900.077;
Aurion, Wageningen, The Netherlands) diluted
1:10 in PBS, and then incubated with primary
monoclonal antibodies raised in mouse
against the domain III/IV of m-calpain (C-268;
Sigma) and primary polyclonal antibodies

raised in rabbit against the domain IV of µ-cal-
pain (C-5611; Sigma), diluted 1:50 in PBS,
overnight at 4°C. After washing in PBS, the
samples were incubated with gold-conjugated
goat anti-mouse IgG (806.022, Aurion) and
goat anti rabbit IgG (106.011, Aurion) diluted
1:200 in PBS for 1 h at RT. The secondary anti-
body was conjugated with gold particles of dif-
ferent sizes (5 and 15 nm). After washings in
PBS, samples were fixed in 2.5% glutaralde-
hyde in 0.1 M Cacodylate buffer, at pH 7.2, for
30 min. After washings with distilled water,
samples were subjected to silver enhancement
(500.055, Aurion). The silver enhancement
process enables the use of antibodies conju-
gated with small (6 nm) gold particles allowing
fast penetration and high labeling efficiency.42

Samples were then dehydrated through an
ethanol series and dried to the critical point.
The specimens, mounted on stubs, were exam-
ined under a LEO 435 VP scanning electron
microscope at variable pressure (80-120 Pa) in
the backscattered electron mode, which allows
the detection of gold particles associated with
cells even if they are located intracellularly.43

Since the samples were not coated by gold,
only conjugated gold deriving from immunocy-
tochemical reaction was observed by SEM and
photographed.

Western blot analysis
Proteins from masseter and diaphragm

muscle samples were extracted with Lysis
buffer (220 mM D-Mannitol, 70 mM
Saccharose, 1 mM EDTA, 20 mM Tris pH 7.4,
containing protein inhibitors 2 mM PMSF, 1
mM pepstatin A, 2 mM trypsin inhibitor from
chicken egg white). Muscle samples were
homogenized with ultra-turrax T25 (IKA-
labortechnik, Staufen, Germany) for three
times at 500 rpm, 800 rpm and 14,000 rpm for
10 min/each. The supernatants were collected
and underwent protein determination with the
Bio-Rad dye protein assay (Bio-Rad laborato-
ries Inc., UK). Samples were boiled at 98°C for
10 min in loading buffer (50 mM trisHCl pH
6.8, 100 mM b-mercaptaethanol, 2% SDS, 0,1%
blue bromophenol, 10% glycerol). The proteins
were separated on a 8% SDS-polyacrylamide
gel electrophoresis with 4% stacking gel in 1%
Tris-glycine buffer (0.025 M Tris, 0.192 M
glycine, and 0.1% SDS pH 8.3) in a minipro-
tean cell (Bio-Rad) at 130 volts for 2 h. The
separated proteins were electro transferred
onto a nitrocellulose membrane with transfer
buffer (39 mM Tris base, 0.2 M glycine, and
20% methanol pH 8.5) in a minitransfer cell
(Bio- Rad) at 100 volts at 4°C for 2 h.
Membranes were incubated at 4°C for 1 h in
blocking buffer containing 1%PBS, 0.05%
Tween 20 and 5% dried non-fat milk and with
monoclonal antibodies raised in mouse
against domain III/IV of m-calpain (C-268;
Sigma) and monoclonal antibodies against b-

actin (A5441, Sigma) as an internal marker,
and with polyclonal antibodies raised in rabbit
against domain IV of µ-calpain (C-5611;
Sigma) and polyclonal antibodies against b-
actin (A5060, Sigma) as an internal marker
over night at 4°C. Primary antibodies were
diluted 1:1000. The incubation with secondary
anti-mouse and anti-rabbit IgG (1:5000) was
carried out for 1h at RT. Signals were detected
by chemiluminescence with the Immobilan
Western Chemiluminescent HRP substrate Kit
(Millipore, Billerica, MA, USA) with Chemidoc
(Bio-Rad). A prestained molecular-weight lad-
der (Novex Sharp protein standard, LC5800,
Invitrogen, Hilden, Germany) was used to
determine protein size. Western blotting bands
were quantified by Quantity One (Bio-Rad)
software. Rat skeletal muscle was used as a
positive control.

Statistical analysis
Data were analyzed by one-way analysis of

variance (ANOVA) and Turkey’s test. The
analysis were carried out with the Statistica
version 7.0 statistical package (Statsoft inc.,
Tulsa, OK, USA). Data are expressed as mean
± SEM.

Casein zymography method
To determine activity of µ- and m- calpain

the casein zymography method based on the
protocol described by Raser, Posner, and
Wang44 was used. One gram of each sample
was homogenized with ultra-turrax T25
(13.500 rpm) in 6 mL of extraction buffer (50
mM Tris; 5 mM EDTA; 10 mM Monothio -
glycerol; one tablet per 50 mL of Protease
Inhibitor Cocktail Tablet COMPLETE, RAS
Roche Applied Science, Mannheim, Germany;
pH 8.0) and centrifuged for 30 min a 4°C and
15,000g. Each sample was run using 12,5%
casein precast gel (Bio-Rad Labora tories,
Hercules, CA) twenty-five µL of sample buffer
(300 mM Tris, 40% glycerol, 0,02% bromophe-
nol blue, 100 mM DTT, pH 6.8) were added to
75 µL of the supernatant and 15 µL sample
were loaded into each well of the gel. Before
loading the samples, the gel was prerun for 15
min at 80 V (running buffer: 25 mM Tris, 192
mM glycine, 1 mM EDTA, pH 8.3). 

Electrophoresis was carried out at 80 V for 3
h at 4°C. Gels were then removed, rinsed with
deionized H2O, and incubated with shaking at
RT in 100 mL of incubation buffer (50 mM Tris,
4 mM CaCl2, 10 mM monothioglycerol, pH 7.5)
for 1 h; gels were rinsed twice. The calpain
activity was stopped by washing the gel
overnight with shaking, using 20 mM Tris, 10
mM EDTA, pH 7.0. Gels were stained for 6 h
with colloidal Comassie Brilliant Blue G45 and
destained overnight with deionized H2O.
Signals were detected by UV transillumination
with Chemidoc (Bio-Rad).
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Results

Since the results obtained for both masseter
and diaphragm muscles were similar, we will
refer to them as the skeletal muscles of
Marchigiana cattle.  

Immunohistochemistry
In the longitudinal sections of the skeletal

muscle of Marchigiana cattle, both m- and 
µ- calpain immunopositivity could be seen
(Figure 1a,b). The positivity was present for
both calpains along Z disk/I band regions. In
the A-band area the positivity was absent
(Figure 1a,b).

Immunogold-labeling SEM analysis
Both m- and µ-calpain immunoreactive gold

particles were detected in the cytoplasm
(Figure 2). In particular, immunopositivity was
localized along the Z disk/I band regions
(Figure 2a,b) and in the intracellular stores
(Figure 2c,d).

Western blot analysis 
The espression of m- (Figure 3a) and µ-cal-

pains (Figure 3b) was detected at 0, 5, 10 and
15 days of storage at 4°C in the masseter
(Figure 3a) and diaphragm (Figure 3b) mus-
cles. Both m- and µ-calpains showed a molecu-
lar mass of about 80 kDa. A significant
decrease in the level of expression for µ-cal-
pain was detected at the 10th and the 15th day
(Figure 3b); m-calpain showed a significant
decrease at the 15th day (Figure 3b).
Densitometric analysis of the immunoreactive
bands was performed and b-actin (molecular
mass of about 42 kDa), as an internal marker,
was used to normalize the optical density. 

Casein zimography
Four bands of enzymatic activity were iden-

tified on the gels. Two of these bands were
located on the top of the gels, where µ-calpain
normally is positioned; the other two migrated
further into gels, where m-calpain runs.44,46 We
assumed that the two bands located on top of
the gels corresponded to native and autolyzed
µ-calpain activities (Figure 4, thin arrow), and
the other two bands represent native and
autolyzed m-calpain activities (Figure 4, thick
arrow). The autolyzed forms of both µ- and m-
calpain migrated slightly faster than the native
forms. 

Therefore, autolyzed µ-calpain migrated at a
position in between native µ-calpain and
native m-calpain.47 During the post-mortem
storage we observed a gradual reduction of
native and autolyzed µ-calpain activities while
native and autolyzed m-calpain activities per-
sisted up to 15 days (Figure 4).

Controls
Negative controls did not show specific

immunostaining. Moreover, the incubation of
m-and µ-calpain antiserum preincubated with
its homologous antigen showed no immunore-
activity. In  Western blotting analysis, rat
skeletal muscle, used as a positive control,
showed a band of about 80 kDa when antibod-
ies against m- and µ-calpains were employed
(Figure 3a,b).

Discussion

In this study, we report on the presence,
level of expression and enzymatic activity of
m- and µ-calpain in the masseter and
diaphragm muscle of Marchigiana cattle.

Original Paper

Figure 1. Immunohistochemistry: longitu-
dinal sections of Marchigiana cattle mes-
seter (a) and diaphragm (b) muscles. m- (a)
and µ-(b) calpain immunopositivity was
identified in the Z disk/I band region (Z/I),
while the positivity was absent in the A-
band area (A). Negative control (c). Scale
bars: 10 µm.

Figure 2. Immunogold labeling/SEM analysis: m- (a,c) and µ- (b,d) calpain immunoreac-
tive gold particles localized in Z disk/I band region (Z/I) (a,b) and in the intracellular
stores (P) (c,d) in the masseter muscle. Scale bars a,b: 30 µm; scale bars c,d: 10 µm.
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Immunohistrochemistry and immunogold-
labeling SEM analysis revealed the presence of
calpains both along the Z disk/I band areas and
in intracellular stores. These results are in
agreement with the current literature. In fact,
in normal skeletal muscle the majority of cal-
pains are located on or next to the Z-disk with
few in correspondence to the I-band and very
few in correspondence to the A-band, as well as
in vesicles and subcellular organelles.36,48-51

Particularly, during the first few hours post-
mortem, m- and µ-calpains are localized in
subcellular organelles in the inner sarcoplasm,
and then spread along Z disk/I-band areas of
myofibrils beginning the transformation of
muscle into meat.

The presence of m-and µ-calpains in corre-
spondence to the Z disk/I band areas of the
diaphragm and masseter muscles of
Marchigiana cattle suggests that in these mus-
cles the proteolytic action of calpains occurs on
those proteins that are involved in keeping
miofilaments attached to the myofibril. In fact,
calpains rapidly cleave titin and nebulin at the
point where these 2 polypeptides enter the Z
disk.2 Titin and nebulin cleavage, together
with that of desmin and filamin, release α-
actinin,52 the principal Z disk protein, from the
myofibril. Calpains do not degrade at all or
degrade very slowly, actin and
myosin,2,36,51,52the two major proteins in skele-
tal muscle myofibrils, implying that calpains
had a limited and very specific subsite speci-
ficity.36 Calpains also degrade M proteins,
tropomyosin and troponin, albeit at slower
rates than titin and nebulin.51,53 In general, cal-
pains cleave proteins at a limited number of
sites and produce large polypeptide fragments
rather than small peptides or amino
acids.51,53,54 Because of the limited specificity of
the calpains, further degradation of myofibril
proteins in aminoacids requires the participa-
tion of other proteases. It seems likely that the
proteasome plays a major role in the degrada-
tion and release of actin, myosin and the other
myofibrillar protein fragments.55-57 The proteo-
some, on the other hand, cannot degrade intact
myofibrils58 or cytoskeletal complexes, likely
because the entrance to the central cavity of
the proteosome containing the active sites is
only 19-13 Å in diameter and is much too nar-
row to allow entry of myofibrils that range from
10 to 100 µm in diameter. Therefore, the cal-
pains begin the process of muscle transforma-
tion in meat that in turn, requires other pro-
teases to be completed. Among these, the cas-
pase system could be active post-mortem and
contribute to tenderization9,59,60 throughout an
interaction with the calpain system. In fact,
caspases may contribute to decrease the cal-
pastatin level in the muscle aging and this, in
turn, could results in the activation of calpains
and thus reducing toughness.9,61

In the skeletal muscle of Marchigiana cattle
the level of expression of m- and µ-calpains

Original Paper

Figure 3. Upper: Western blotting analysis carried out on masseter (blot-a) and
diaphragm (blot-b) muscles. The detected m- (blot-a) and µ- (blot-b) calpains showed
a molecular mass of 80 kDa. b-actin showed a molecular mass of 42 kDa (blot a,b).
C=control (rat skeletal muscle); T0= soon after animals slaughter; T5=5th day post-
mortem (p.m.) storage; T10=10th day post mortem storage; T15= 15th day post-mortem
storage. Down: densitometric analysis of the immunoreactive bands. Each value rep-
resents the mean ±SEM of ten independent experiments. Asterisks indicate statistical-
ly significant differences (P<0.05).

Figure 4. Top: native and autolyzed µ-calpain activities (thin arrow). Down: native and
autolyzed m-calpain activities (thick arrow). T0=soon after animals slaughter; T5=5th

day post-mortem (p.m.) storage; T10=10th day post-mortem storage; T15=15th day
post-mortem storage.
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and their enzymatic activity was detected up to
15 days post-mortem. Our results indicate a
decrease in the level of expression of µ-calpain
after 10 days of storage, while m-calpain
expression persisted up to 15 days of post-
mortem storage. The trend of activity of both µ-
and m-calpain overlap with their expression
pattern. It is well known that post mortem acti-
vation of m-calpain is due to the increasing
concentration of Ca2+.28 The activity of µ- and
m-calpain is synergistic: µ-calpain contributes
to early post-mortem proteolysis, while m-cal-
pain is partially activated and contributes to
tenderization during prolonged ageing.35,62-64 In
the bovine skeletal muscles (longissimus dorsi,
semimembranosus, triceps brachii and psoas
major), the proteolytic activity of µ-calpain
decreases rapidly during post mortem storage
and very little activity can be detected after 48
h post-mortem storage at 4°C, so that only 10 to
20% of m-calpain activity remained after 144 h
post-mortem.47,65 The proteolitic activity of cal-
pains depends on the Ca2+ concentration and
pH of the muscle during the post mortem stor-
age.47,66,67 We choose, as muscle samples, the
diaphragm and the masseter muscle because,
in live animals, they are striated muscles sub-
jected to mechanical and functional stresses
during breathing (diaphragm muscle) and
chewing (masseter muscle). By histoenzymat-
ic staining, these muscles show  a prevalence
of oxidative fibers rather than glycolityc ones
(data not shown) that could lead a slower low-
ering of the pH in the post-mortem storage and
explain the slower trend of activity and expres-
sion of both µ- and m-calpain reported here.

Our results are in agreement with the pic-
ture emerging from previous researches,
although we reveal a greater persistence of
expression and enzymatic activity of m- and µ-
calpains in Marchigiana cattle skeletal muscle.
Such disagreement could be ascribed to the
type of muscle chosen or to the breed consid-
ered for this study. Certainly, further investiga-
tions, involving, also, ultrastructural analysis,
may help to study the role of calpains in meat
tenderness in the Marchigiana cattle.
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