Among the papers published in the European Journal of Histochemistry in 2001, several deal with plant cells. Personally, as a cell biologist mainly working with animal cells, I have always been fascinated by plant cells: the images of those beautiful nuclei are not only something to look at and marvel at. In the past few years, important indications of cell structure and function have come from plant cytology and cytochemistry (see e.g. Medina et al., 2000). Along this line, Lingua and coworkers (2001) described the changes that occur after arbuscular mychorizal fungi colonization, which can induce a strong increase in metabolism. Nuclear changes can also be induced by pathogens, as in *Licopersicon esculentum* (Lingua et al., 2001).

In the same issue, we find other interesting papers: Balestrazzi et al. (2001) have studied the expression of DNA topoisomerase I in *Daucus carota*: the elucidation of the expression pattern of this gene is important in the evaluation of its physiological functions. In another paper, Bianciotto et al. (2001) studied the association of arbuscular mychorzial fungi colonization, which can induce a strong increase in metabolism. Nuclear changes can also be induced by pathogens, as in *Licopersicon esculentum* (Lingua et al., 2001).

In the same issue, we find other interesting papers: Balestrazzi et al. (2001) have studied the expression of DNA topoisomerase I in *Daucus carota*: the elucidation of the expression pattern of this gene is important in the evaluation of its physiological functions. In another paper, Bianciotto et al. (2001) studied the association of arbuscular mychorzial fungi colonization, which can induce a strong increase in metabolism. Nuclear changes can also be induced by pathogens, as in *Licopersicon esculentum* (Lingua et al., 2001).

Another interesting paper (Sedo et al., 2001) concerns cell membrane proteases; in particular, dipeptidyl peptidase IV in glioblastoma and astrocytoma cultured cells. The authors suggest a positive correlation between the degree of transformation of cells and activity of this protease.

Among the technical improvements, I would like to cite the paper by Gallus et al. (2001) on the three-dimensionally-reconstructed distribution of FMRFamide immunopositive neurons in the ventral ganglion of *Balanus*.

There are still many more papers in the field of Basic Histochemistry that could be mentioned. Among them are the characterization of interstitial cells in pre- and post-natal development of sheep pineal gland (Redondo et al., 2001), the effect of light on lactate hydrogenase activity of the epidermis (Ponce et al., 2001), and the study of cell...
kinetics in a human skin equivalent, i.e. a bioengineered organ raised \textit{in vitro} as a candidate for replacing damaged human skin (Casasco et al., 2001). In this category, we find also the paper by Artico et al. (2001) on the effect of interleukin 1 on the rat thymus, which describes the capability of this cytokine to affect the thymus even in aged rats. Finally, in the field of apoptosis, we find a paper on the cleavage of PARP-1 and the formation of strand breaks in DNA, describing how the p89 proteolytic fragment of poly(ADP-ribose) polymerase-1 is resistant to protease degradation in the cytoplasm of apoptotic cells (Soldani et al., 2001). This finding increases the family of nuclear proteins which are extruded from the nucleus into the cytoplasm of apoptotic cells (Pellicciari et al., 2000) and could be involved in the genesis of autoimmune diseases, in the absence of a correct apoptotic clearance (Rovere et al., 2000).

The high quality of the papers published in 2001 is consistent with the important increase in the Impact Factor value of EJH which occurred in 2000: this is an apparent sign of a wider diffusion and an increasing impact of our Journal on the scientific community.

REFERENCES

