Histochemical detection of acetogenins and storage molecules in the endosperm of Annona macroprophyllata Donn Sm. seeds

G. Laguna Hernández,1 A.E. Brechú Franco,1 I. De-la-Cruz-Chacón,2 A.R. González-Esquínca2
1Faculty of Sciences, National Autonomous University of Mexico, Coyoacán, Mexico
2Institute of Biological Sciences, University of Sciences and Arts of Chiapas, Tuxtla Gtz., Chiapas, Mexico

Abstract

Acetogenins (ACGs) are bioactive compounds with cytotoxic properties in different cell lines. They are antitumoural, antiparasitic, antimalarial, insecticidal, antimicrobial, antifungal and antibacterial. These secondary metabolites function in plant defence and are commonly found in annonaceous structures by thin layer chromatography; it is established technique used to identify ACGs in situ. In the present study, a histochemical technique was used to detect ACGs in seed sections of Annona macroprophyllata, and to analyse the co-localisation of ACGs with other storage molecules, including lipids, albumin-type proteins, and polysaccharides, such as starch and galactomannans. These storage substances are currently used during embryonic development, germination and seedling establishment, which occurs almost a month after the onset of germination. The endosperm of the mature seeds also contains secondary metabolites, such as alkaloids, polyphenols, essential oils, terpenes and acetogenins (ACGs), which are typical of these plants. Chemically, ACGs are C15–C20 compounds of apparent polyketide origin that possess one or two tetrahydrofuran rings and a β-lactone (either saturated or unsaturated), and they usually contain aliphatic regions that are variously hydroxylated, acetoxylated, or ketonised. The chromatographic separation of hexane extracts of A. macroprophyllata seeds led to the isolation of the ACGs lahererradurine, cherimoline-2, rolliniasisatin-2 and isorolliniastatin-2, which correspond to 0.1% of the endosperm’s weight.14 These ACGs are pharmacologically important because they are potent inhibitors of the mitochondrial NADH:ubiquinone-oxidoreductase (complex I of the respiratory chain). Labererradurine inhibits tumour cells but does not affect normal cells, and it could be used in the future as an antitumor drug.14 These secondary metabolites function in plant defence and occur in specific organelles and specific cells, thereby preventing toxicity to the plant itself and permitting site-specific defence. Staining with Kedde’s reagent was of great help in distinguishing between ACGs and other storage molecules. The aim of this work was to histochemically determine the in situ localisation of ACGs in the endosperm of A. macroprophyllata seeds using Kedde’s reagent, as well as to analyse the co-localisation of ACGs with other storage molecules.

Introduction

Species in the Annonaceae have endospermic seeds with minute embryos. The ruminate endosperm occupies almost the entire volume of the seed and contains diverse storage molecules, including lipids, albumin-type proteins, and polysaccharides, such as starch and galactomannans.1,11 These storage substances are currently used during embryonic development, germination and seedling establishment, which occurs almost a month after the onset of germination.4 The endosperm of the mature seeds also contains secondary metabolites, such as alkaloids, polyphenols, essential oils, terpenes and acetogenins (ACGs), which are typical of these plants. Chemically, ACGs are C15–C20 compounds of apparent polyketide origin that possess one or two tetrahydrofuran rings and a β-lactone (either saturated or unsaturated), and they usually contain aliphatic regions that are variously hydroxylated, acetoxylated, or ketonised.15 The chromatographic separation of hexane extracts of A. macroprophyllata seeds led to the isolation of the ACGs lahererradurine, cherimoline-2, rolliniasisatin-2 and isorolliniastatin-2, which correspond to 0.1% of the endosperm’s weight.13 These ACGs are pharmacologically important because they are potent inhibitors of the mitochondrial NADH:ubiquinone-oxidoreductase (complex I of the respiratory chain). Labererradurine inhibits tumour cells but does not affect normal cells, and it could be used in the future as an antitumor drug.14 These secondary metabolites function in plant defence and occur in specific organelles and specific cells, thereby preventing toxicity to the plant itself and permitting site-specific defence. Staining with Kedde’s reagent was of great help in distinguishing between ACGs and other storage molecules. The aim of this work was to histochemically determine the in situ localisation of ACGs in sections of A. macroprophyllata seeds using Kedde’s reagent, as well as to analyse the co-localisation of ACGs with other storage molecules.
tion, when the radicle was 1 or 2 cm in length and metabolism was fully established. The seeds were then cut in half at the midline and processed as illustrated in Figure 1.

Seeds used for fresh sections

Some of the seed halves were stored in water until sectioning on a cryostat. Others were stored in 70% alcohol, and others were fixed in FAA (10% formaldehyde/50% alcohol/5% acetic acid/55% water) for 72 h or in AGF (1.5% acrolein/3% glutaraldehyde/1.5% formaldehyde in 0.1 M sodium cacodylate buffer, pH 7.4) (Electron Microscopy Sciences, Hatfield, PA, USA) for 12 h. Then, the seed halves were washed with distilled water. Some halves were processed for paraffin embedding, and others remained in water until sectioning.

Histochemistry on fresh sections

The seeds that were stored in water, whether fixed or not, and the seeds that were stored in 70% alcohol were cut into 20-µm cross sections using a Leica CM1510S cryostat at between -14 and -18°C. Once on slides, the fresh sections were washed with distilled water three times for 5 min per wash to eliminate the Tissue Tech gel. The excess water near the section was absorbed with filter paper, and then the appropriate reagent was added. Kedde’s reagent (10% dinitrobenzoic acid and 2 N KOH in MeOH) is specific for ACGs, and a positive reaction yields a pink/magenta color. Lugol’s iodine solution (0.5 g iodine and 2.0 g KI in 100 mL distilled water) yields a dark purple color when it reacts with starch. Sudan III (0.1% in EtOH) yields a reddish orange color in the presence of fats. All analyses were performed at room temperature (approximately 23°C). After the reagents were applied, the samples were immediately observed through a microscope for ten to thirty minutes and photographed.

Histochemistry on paraffin sections

The paraffin-embedded samples were cut into 8-µm sections using a Microm HM 340 E microtome (Thermo Fisher Scientific, Inc., Waltham, MA, USA), deparaffinised, rehydrated, stained for 10 min with Kedde’s reagent to visualise the ACGs, and observed under a microscope. Other sections were rehydrated in 70% ETOH and stained with Naphthol Blue Black (1.0% in 50% ETOH) for protein analysis, and others were rehydrated in water, exposed to periodic acid (0.6%) for 1 min, and rinsed with distilled water. Then, Schiff reagent (Sigma-Aldrich 3952016; S. Louis, MO, USA) was added, incubated for 20 min and rinsed with distilled water. Then, the sample was dehydrated with xylene and mounted with resin. With this treatment, the polysaccharides stained a fuchsia color. Johansen’s quadruple stain was added to sections that had been rehydrated in 70% ETOH. According to Johansen, although the mixtures are rather complicated, the procedure is simple; differentiation is automatic, and little is left to personal judgment.

Figure 1. Methods flowchart.

[Image of flowchart]

Figure 2. A) Kedde’s reagent positively reacts with the acetogenins in the idioblasts of fresh, unfixed sections, yielding a pink/magenta color. B) Sudan III positively reacts with oil drops to yield a reddish orange color in fresh, unfixed sections. C) Kedde’s reagent does not react with fresh sections fixed in FAA; the idioblasts appear empty. D) Naphthol Blue Black reagent stains the cell walls and proteoplasts of paraffin sections blue, and the idioblasts appear empty. Ep, endosperm parenchyma; I, idioblasts; Od, oil drops; P, proteoplasts.
Microphotography

Photographs and idioblast measurements were taken with a Canon PowerShot A640 digital camera coupled to a Zeiss AxioStar Microscope with AxioVision software (Carl Zeiss Imaging Systems, Jena, Germany). Microscopic observations were made with A-Plan 10x/0.25 and A-Plan 40x/0.65 Ph2 objectives.

Results and Discussion

Positive reactions with Kedde’s reagent were only observed in fresh sections that were either unfixed or had been fixed in AGF and preserved in water, and staining was found only in the large cells (56×38 µm) at the periphery of the endosperm next to the tegmen; these cells are idioblasts (Figure 2A). The lipid nature of the ACGs was confirmed by their positive reaction with Sudan III in both fresh sections and sections that had been fixed in AGF (Figure 2B). Therefore, we propose that histochemical staining is appropriate for detecting ACGs and that the large cells are idioblasts that store ACGs.

Due to the use of solvents such as ethanol and xylene, none of the sections that had been fixed in FAA, stored in 70% alcohol, or embedded in paraffin showed staining in the idioblasts (Figure 2C). Naphthol Blue Black stained the cell walls blue, and the idioblast cytoplasm appeared secretory and lacked any special organelles; in the remaining endosperm cells, blue-stained proteoplasts were detected (Figure 2D) and might correspond to storage sites for albumin-type proteins, which have been reported to be stored in idioblasts. The protoplasts and idioblasts do not stain. D) Lugol’s iodine used on a fresh, unfixed section results in golden brown-colored drops in the idioblasts. Ep, endosperm parenchyma; I, idioblasts; P, proteoplasts.

Figure 3. A) Johansen’s quadruple stain used on a paraffin section stains the proteoplasts purple. B) Kedde’s reagent used on a paraffin section does not react, and the idioblasts appear empty. C) Schiff reagent used on a paraffin section stains the cell walls purple, but the proteoplasts and idioblasts do not stain. D) Lugol’s iodine used on a fresh, unfixed section results in golden brown-colored drops in the idioblasts. Ep, endosperm parenchyma; I, idioblasts; P, proteoplasts.

ACGs are bioactive compounds with cytotoxic properties in multiple cell lines, and they have antitumour, antiparasitic, antimarial, insecticidal, antimicrobial, antifungal and antibacterial effects. In particular, the acetogenin laherradurin might act as an autoinducer or quorum-sensing signalling molecule that affects the expression of genes involved in biofilm formation in Pseudomonas plecoglossicida J26.18 Since ACGs are located in idioblasts that are found only in restricted areas in the periphery of the endosperm, despite the large amount of protein and oil reserves contained in the endosperm of mature seeds, ACGs may act as a barrier that protects seeds against insects and pathogens. In addition, the presence of alkaloids in the idioblasts might support this idea, because alkaloids are also strongly insect repellent and toxic to microorganisms.

Villamil et al. reported amyloid granules in A. muricata endosperm. However, in A. macroprophyllata, amyloids are not present because they do not show blue or purple staining with Lugol’s iodine in the endosperm cell walls, as reported by Kooiman2 for 25 species of Annonaceae. Some endosperm cells in A. macroprophyllata stain brown, which may correspond to dextrins. As described by Kooiman, the term amyloid refers to a group of polysaccharides with similar structures, particularly those reported by Schleiden in 1838 (in 1) and by Vogel and Schleiden in 1839 (in 2), who first used the term. Using Mitchell reagent, which has the same composition as Lugol’s iodine, Kooiman detected cellulose and hemicellulose via blue staining in the presence of 75% sulphuric acid. Consistent with these ideas, we suggest that the term amyloid should no longer be used to refer to the group of compounds that can be detected with Schiff
This histochemical method for detecting ACGs in situ in seed sections using Reddy’s reagent can test for the presence of these substances in developing tissue or mature organs. It can also differentiate between various substances in the same structures, as it occurred using Warner reagent to detect alkaloids in idioblasts. This work histochemically demonstrates the compartmentalisation of ACGs in the endosperm, suggesting that its aforementioned characteristics are part of a protective strategy that allows selective defence for the sexual propagation of the species.

References

