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Abstract
The high-resolution images provided by

the electron microscopy has constituted a
limitless source of information in any
research field of life and materials science
since the early Thirties of the last century.
Browsing the scientific literature, electron
microscopy was especially popular from the
1970’s to 80’s, whereas during the 90’s,
with the advent of innovative molecular
techniques, electron microscopy seemed to
be downgraded to a subordinate role, as a
merely descriptive technique. Ultra -
structural histochemistry was crucial to pro-
mote the Renaissance of electron
microscopy, when it became evident that a
precise localization of molecules in the bio-
logical environment was necessary to fully
understand their functional role. Nowadays,
electron microscopy is still irreplaceable for
ultrastructural morphology in basic and
applied biomedical research, while the
application of correlative light and electron
microscopy and of refined ultrastructural
histochemical techniques gives electron
microscopy a central role in functional cell
and tissue biology, as a really unique tool
for high-resolution molecular biology in
situ.

Introduction
Since the early Thirties of the last cen-

tury, when the first electron microscope was
built, the high-resolution images provided
by this revolutionary instrument has consti-
tuted an inexhaustible source of information
in any research field of both life science1

and materials science.2
The diffusion of commercial transmis-

sion electron microscopes and, afterward,
of the scanning electron microscopes result-
ed, from the Fifties to the Seventies, in an
extraordinary increase of studies aimed at
describing the fine morphology of living or
material structures, leading to a remarkable
advancement of knowledge. At the same
time, histochemical and immunohistochem-
ical techniques, until then prerogative of
light microscopy, were applied to electron
microscopy, thus allowing the precise loca-

tion of molecules in cell and tissue compo-
nents by using electrondense markers.3-10

In the field of life science, since 1956
about 270,000 articles (96,000 on biomed-
ical subjects) have been published where
electron microscopy was used (source:
Scopus database); out of them, more than
47,000 articles or reviews also contained
histochemical data (about 44,000 on bio-
medicine, while 3000 only fall into the field
of animal or plant biology). Looking at the
distribution of published papers in this
timespan (Figure 1), it is evident that elec-
tron microscopy was especially popular
from the 1970’s to 1980’s, whereas during
the Nineties, with the advent of innovative
molecular techniques, electron microscopy
seemed to be downgraded to a subordinate
role as a merely descriptive technique, with
a concomitant decrease in the number of
published papers. However, when it became
evident that a precise localization of mole-
cules in the biological environment was
necessary to understand their functional
role, a sort of Renaissance of ultrastructural
histochemistry took place,11-28 which has
still been continuing during the last
decade.29-41 In this regard, it is interesting to
observe (Figure 1) that the articles contain-
ing histochemical and ultrastructural data
became relatively frequent since the second
half of the 1970’s, progressively increased
in the 1980’s, to remain almost constant in
their yearly number until now.

May electron microscopy still
make a relevant contribution to
life sciences?

In recent years, with the advent of the
fluorescence super-resolution microscopy,
the limit of optical resolution of light
microscopy (about 250 nm) was decreased
to the 20-50 nm range,42-44 which enabled to
examine cellular details at the nanoscale
level, previously unattainable with light
microscopes, and approaching the resolu-
tion of electron microscopy.45 In some
authors’ opinion, super-resolution
microscopy “has the potential to replace
conventional light microscopy in subcellu-
lar imaging questions as the dominant go-to
technique”,46 enjoying the benefit of the
wide variety of available multicolor histo-
chemical techniques. This even makes it
questionable whether transmission electron
microscopy (TEM) and scanning electron
microscopy (SEM) may still make a rele-
vant contribution to the studies in life sci-
ence, especially in advanced research fields. 

Electron microscopy techniques have
been used for a variety of investigations in
life science, and it would be very difficult to
analyze in detail a so large number of

papers in the scientific literature, attempting
to understand how electron microscopy was
applied, and whether new fields of research
may have born, especially in recent years.
Thus, I decided to limit my survey to the
articles published in the European Journal
of Histochemistry, taken as an example of a
purely histochemical journal that has tradi-
tionally been devoted to a wide assortment
of subjects in biology and medicine, from
functional cell and tissue biology in animals
and plants, to cell differentiation and devel-
opment, to the cellular basis of diseases.

Taking into account the articles pub-
lished herein during the last decade, it is
evident that many studies (on average 12%,
with an increase of about 4% in the last
three years) either combined histochemical
techniques at light microscopy with the
high-resolution morphology provided by
electron microscopy, or directly applied
ultrastructural histochemistry. 

The ultrastructural morphological
approach at TEM has been widely used in
basic and applied biomedical research for
the study of different tissues under unper-
turbed or experimental conditions: tooth
structure and repair;47,48 white adipose tissue
classification;49,50 stem cells culture for
reconstructive purpose;51,52 skeletal muscle
features under experimental53,54 and patho-
logical55,56 conditions; liver response to pre-
transplantation treatment;57 female repro-
ductive organs58 and explanted oocytes for
in vitro reproduction;59,60 post-implant skin
modification;61 autopsy myocardium for
diagnostic purposes62.

Fine morphology at TEM has also been
applied in cell63-67 and developmental biolo-
gy,68-70 and was essential to describe the fine
morphology of tissue and organs of differ-
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ent animal species.71-74 In recent years, mor-
phology at TEM proved to be crucial in
nanomedicine to describe the interactions of
nanoconstructs with different cell compo-
nents.38,75 Finally, morphological analysis at
TEM has been applied to reveal the struc-
tural preservation of explanted organs or tis-
sues maintained in vitro in innovative flu-
idic systems.76 The three-dimensional ultra-
structural morphology provided by SEM
contributed to the detailed characterization
of bone77 and adipose tissue.49,50,78

Ultrastructural morphological data have
been combined to Energy Dispersive X-ray
(EDX) microanalysis in biomedical
research and diagnosis79 to detect asbestos
fibers and metal contaminants in lung carci-
nomas,80,81 or to evaluate the biocompatibil-
ity of bone cements for reconstructive pur-
poses,82 as well as to describe the effect of
pollution on marine organisms in environ-
mental research.83

Recently, TEM and atomic force
microscopy have been used in a correlative
approach, to characterize the byssus threads
of Pinna nobilis84 or the protein globoids
and starchy granules in the seeds of differ-
ent cereals.85

Besides the use of electron microscopy
as a high-resolution morphological support
to light microscopy histochemistry, many
authors directly applied ultrastructural cyto-
chemistry and immunocytochemistry to
various research fields.

A cytochemical approach using osmium
ammine staining allowed to describe the
DNA organization in the chromatin struc-
ture of mammalian nuclei.86 In several
papers,  diaminobenzidine photo-oxidation
was applied to visualize fluorescent probes
at TEM: by this approach, calcium ions

were detected and located in the endoplas-
mic reticulum after staining with Mag-Fura
2 dye,87 the uptake and intracellular fate of
different fluorescently-labelled nanoparti-
cles was monitored,88,89 and the different
subcellular compartments involved in the
endocytosis routes were precisely described
after labelling the plasma membrane with
the fluorescent dye, PKH26.90 The possibil-
ity to combine diaminobenzidine photo-oxi-
dation and gold immunolabelling was also
demonstrated.91

Ultrastructural immunocytochemistry
has largely been used to visualize specific
proteins in cultured cells,66,92-94 as well as in
calcified tissues,47,68,95 in the nervous tis-
sue,96,97 in the skeletal muscle,56,98 and in the
gonads.99 Immunocytochemistry at TEM
has been coupled to Field Emission in Lens
Scanning Electron Microscope,100-102 and
has been performed in samples prepared for
SEM, too.103

Concluding remarks
It is therefore clear that electron

microscopy not only has maintained its fun-
damental role in histochemical studies in a
variety of, let’s say, traditional research
fields (cell and developmental biology, bio-
medicine, zoology), but has likewise proven
to be useful in novel research areas such as
nanotechnology and regenerative medicine.
Moreover, the successful association of the
ultrastructural approach with other power-
ful high-resolution techniques (e.g., X-ray
microanalysis and atomic force micros -
copy) demonstrates the great versatility of
electron microscopy, thus accounting for

the increase of its utilization by scientists in
recent years.

As much as super-resolution light
microscopy, electron microscopy requires
expensive equipment, highly qualified per-
sonnel and time-consuming protocols,
which are all detrimental characteristics in
the present research word ruled by the
“publish or perish” imperative; despite this
limit, these techniques are essential for bio-
medical research where the detection of sin-
gle molecules needs to be associated to their
precise location, at the subcellular (or even
sub-organellar) level.10 Actually, to mecha-
nistically understand the function of an
organelle or a macromolecular complex, the
composition and structure of its molecular
components must be viewed in the frame of
their spatial organization within the cell;
thus, imaging molecules will continue to
remain a crucial issue in biomedical
research, in the years to come.

Electron microscopy will continue to be
irreplaceable for ultrastructural morphology
in basic and applied biomedical research: it
still has better resolution than fluorescence
super-resolution microscopy, and has the
advantage to allow a direct visualization of
both the membrane-bounded and cytosolic
structural components of the cell, whereas
in super-resolution microscopy all these
structures are indirectly resolved through
the labelling of their molecular components
by fluorescent probes.

Correlative light and electron
microscopy (CLEM) methods effectively
integrate the advantages offered by fluores-
cence microscopy and electron
microscopy:105-107 in fact, while light
microscopy allows to screen relatively wide
areas of the sample where multiple molecu-
lar species (proteins, carbohydrates, lipids
and nucleic acids) may simultaneously be
detected by specific labelling, electron
microscopy makes it possible to spatially
visualize both labeled and unlabeled struc-
tures at the highest resolution.

Nowadays, the application of CLEM
and of refined ultrastructural histochemi-
cal techniques is giving back electron
microscopy its central role in functional
cell and tissue biology, as a really unique
tool for high-resolution molecular biolo-
gy in situ.108
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