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Ozone at low concentrations does not affect motility and proliferation of cancer cells in vitro
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Exposure to low ozone concentrations is used in medicine as an adjuvant/complementary treatment for a variety
of diseases. The therapeutic potential of low ozone concentrations relies on their capability to increase the
nuclear translocation of the Nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing the transcription
of Antioxidant Response Elements (ARE)-driven genes and, through a cascade of events, a general cytoprotec-
tive response. However, based on the controversial role of Nrf2 in cancer initiation, progression and resistance
to therapies, possible negative effects of ozone therapy may be hypothesised in oncological patients. With the
aim to elucidate the possible changes in morphology, migration capability and proliferation of cancer cells fol-
lowing mild ozone exposure, we performed wound healing experiments in vitro on HeLa cells treated with low
ozone concentrations currently used in the clinical practice. By combining a multimodal microscopy approach
(light and fluorescence microscopy, scanning electron microscopy, atomic force microscopy) with morphome-
tric analyses, we demonstrated that, under our experimental conditions, exposure to low ozone concentrations
does not alter cytomorphology, motility and proliferation features, thus supporting the notion that ozone therapy
should not positively affect tumour cell growth and metastasis.
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Introduction

Oxygen-ozone (0,-O5) therapy is a modestly invasive practice
used in medicine as an adjuvant/complementary treatment for a
variety of diseases, and is based on the administration of low O,
concentrations (reviews in'?). Although the biological mechanisms
accounting for the therapeutic effects of O, administration have
only partially been elucidated, it is known that this highly oxidiz-
ing gas acts in a dose-dependent manner.>* High O, doses induce a
severe oxidative stress resulting in tissue inflammation and dam-
age through the activation of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB); on the contrary, low doses
initiate a hormetic response (i.e., “the beneficial effect of a low
level exposure to an agent that is harmful at high levels™) leading
to a cytoprotective antioxidant response. In particular, the Nuclear
factor erythroid 2-related factor 2 (Nrf2), that promotes the tran-
scription of Antioxidant Response Elements (ARE) and the conse-
quent production of antioxidant enzymes,® proved to be stimulated
by the low O, concentrations used for various therapeutic purpos-
es.”13 Recently, conclusive evidence has been provided that low O,
concentration increases the nuclear translocation of Nrf2, thus
inducing the Nrf2-mediated Keapl-dependent transcription of
ARE-driven genes.'*

Thus, robust clinical indication and growing scientific data
support the efficacy of O, therapy in various medical fields such as
e.g., orthopedics,'>!” gastroenterology,'®** pneumology,??*> den-
tistry.>>>> However, doubts persist about potential negative side
effects of O; administration.

In particular, O; therapy is frequently applied to oncological
patients due to its efficacy in reducing some adverse side effects of
the anti-cancer treatments.?¢-° Possible undesired consequences of
O, therapy in oncological patients may be hypothesized based on
recent findings on the controversial role of Nrf2 in cancer initia-
tion, progression and resistance to therapies. Hyperactivation of
Nrf2 may promote tumorigenesis by multiple ways: by helping
incipient tumour cells to overcome the oxidative stress, which rep-
resents a barrier against neoplastic transformation and cancer initi-
ation;*! by supporting aberrant cell proliferation through both the
induction of a metabolic switch towards anabolic pathways??> and
the modulation of mRNA translation;** by promoting angiogene-
sis** and drug resistance® through its potent cytoprotective effect.

In fact, no negative effects have so far been reported in onco-
logical patients following O; therapy (recent reviews in3¢37); how-
ever, to our knowledge, no experimental data are presently avail-
able on the possible changes in morphology, migration capability
and proliferation of cancer cells following exposure to low O, con-
centrations.

With the aim to elucidate this issue, we performed wound heal-
ing experiments in vitro®® on HeLa cells exposed to the low O, con-
centrations currently used in the clinical practice. A multimodal
microscopy and morphometry approach was used to investigate
the cytomorphological changes, proliferation and motility of this
established cancer cell line that has previously been used as a suit-
able experimental model to study the effects of the exposure to low
O, concentrations at the cellular level.'#3

Materials and Methods

Cell culture, wound healing assay and ozone treatment

HeLa cells were grown in Dulbecco’s modified Eagle medium
with 10% (v/v) foetal bovine serum (FBS), 1% (w/v) glutamine,
0.5% (v/v) amphotericin B, 100 units/mL of penicillin and 100
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ug/mL of streptomycin (Gibco), at 37°C in a 5% CO, humidified
atmosphere. Cells were trypsinized (0.25% trypsin in PBS contain-
ing 0.05% EDTA) when subconfluent, and then seeded on glass
coverslips in 6-multi-well microplates, for atomic force microscopy
(AFM) and scanning electron microscopy (SEM), or in 24-multi-
well microplates (for wound healing assay and fluorescence
microscopy). For wound healing assay, 5x10° cells per well were
seeded on 24x24 mm slides and, after 48 h, when the cells were
confluent, the cell monolayers were scratched with a sterile 200 pL
pipette tips and immediately exposed to O,-O; gas mixtures at two
different O; concentrations (10 and 35 pg Os/mL O,) according to
Costanzo et al.** A single treatment was performed since, in the
clinical practice, the O, concentrations used for our experiments are
administered once or twice a week; however, HeLa cell are rapidly
dividing (their cell cycle lasts about 20 h), thus making it impossi-
ble to submit the same cells to repeated treatments without causing
excessive oxidative stress. The gas was produced by an OZO2
FUTURA apparatus (Alnitec s.r.l., Cremosano, CR, Italy) which
generates O, from medical-grade O,, and allows photometric real-
time control of gas flow rate and O, concentration. Cells exposed to
air under the same experimental conditions served as control. To
evaluate cell migration during wound healing, images at 4x magni-
fication were taken at 0 h, 2 h, 6 h and 24 h post-treatment using an
inverted microscope (Leica DMIL) equipped with an Optika
Microscopes (Ponteranica, BG, Italy) camera: the cell-free area was
measured in a total of 12 randomly selected microscope fields per
sample (4 fields in 3 independent experiments). The progressive
reduction of the cell-free area was expressed as percentage, taking
as 100 % the value at time 0.

Actin staining, and evaluation of the S-phase and
mitotic cell fraction

To visualize actin microfilaments, 24 h after scratching the cell
monolayers the slides were fixed with 4% (v/v) formaldehyde in
PBS (30 min at room temperature, RT) and 70% (v/v) ethanol in
water (30 min at -20°C); after rehydration with PBS for 5 min at
RT, the slides were incubated with Alexa 488-conjugated phal-
loidin (Molecular Probes, Invitrogen, Monza, Italy) diluted 1:40 in
PBS for 1 h at RT, stained for DNA with Hoechst 33342 (0.1
pg/mL in PBS for 10 min), rinsed in PBS, and finally mounted in
1:1 PBS:glycerol.

The percentage of S-phase cells was also assessed 24 h after
scratching the cell monolayers: the cells were pulse-labelled with
20 pM Bromodeoxyuridine (BrdU, Sigma-Aldrich, St. Louis, MO,
USA) for 30 min at 37°C, then fixed with 70% ethanol and incu-
bated for 20 min at RT in 2 N HCI, to denature DNA partially; after
neutralization with 0.1 M sodium tetraborate (pH 8.2) for 3 min,
samples were washed in PBS, permeabilized for 15 min in PBS
containing 0.1 % bovine serum albumin and 0.05 % Tween-20, and
incubated for 1 h with a mouse monoclonal antibody recognizing
BrdU (BD, Franklin Lakes, NJ, USA) diluted 1:20 in PBS. After
two washes with PBS, samples were incubated for 1 h with an
Alexafluor 488-conjugated anti-mouse secondary antibody
(Molecular Probes, Invitrogen, Milan), diluted 1:200. The cell
samples were washed with PBS, stained for DNA with 0.1 pg/mL
Hoechst 33342 in PBS for 10 min, and finally mounted in
PBS:glycerol (1:1). The percentage of BrdU-positive cells was
evaluated in the region located within 100 pm of the wound edge
in 30 randomly-selected fields (40x) per experimental condition.
The same microscopic fields were used to evaluate the mitotic
index. For observation of all samples, we used an Olympus BX51
microscope equipped with a 100W mercury lamp, under the fol-
lowing conditions: 450-480 nm excitation filter (excf), 500 nm
dichroic mirror (dm), and 515 nm barrier filter (bf) for Alexa 488;
330-385 nm excf, 400 nm dm, and 420 nm bf, for Hoechst 33342.
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Images were recorded with a QICAM Fast 1394 Digital Camera
(QImaging, Surrey, BC, Canada) and processed with Image-Pro
Plus software (Media Cybernetics, Inc., Rockville, MD, USA).

The mean + standard error (SE) values of the analysed vari-
ables were calculated for each experimental condition, and statisti-
cal comparisons were performed by the one-way Anova test (sta-
tistical significance was set at p<0.05).

Scanning electron microscopy

For SEM analysis, 7x10* cells per well were seeded on slides
of 12 mm in diameter. After 2 h and 24 h from the scratching, the
cells were fixed in 4% paraformaldehyde in PBS for 2 h at 4°C,
washed in the same buffer, post-fixed with 1% OsO, at 4°C for
1 h, and dehydrated with acetone (Sigma-Aldrich). The samples
were then treated by critical point dryer (CPD 030, Balzers),
mounted on metallic specimen stubs and sputter-coated with gold
(MED 010 Balzers). SEM imaging was performed by an XL30
ESEM (FEI-Philips). SEM images were used to perform quantita-
tive evaluation of cell size and roughness. By using ImagelJ soft-
ware (NIH), the surface area of 50 cells per sample was measured;
moreover, the cell surface facing the wound edge was measured
both including and excluding cell protrusions in 10 cells per sam-
ple, the ratio between the two values was then calculated in order
to obtain an index of cell surface irregularity (the higher the value
the rougher the cell). Statistical evaluation of the results was per-
formed by the one-way Anova.

Atomic force microscopy

For AFM analysis, 7x10* cells per well were seeded on slides
of 12 mm in diameter. For topographic images at AFM, 2 h and
24 h post-treatment the cells were fixed in 2% glutaraldehyde in
phosphate buffer for 20 min, washed in the same buffer and
deposited onto 20 mm mica discs (Ted Pella Inc., Redding, CA,
USA), after having dried the surfaces of the slides. The mica discs
were mounted on suited metallic specimen discs in order to be
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analysed with a NT-MDT Solver-pro equipped with a 60x60-pum
scanner and gold-coated NSG-01 silicon probes, from the same
company, with a curvature radius of 10 nm. To evaluate the cell
thickness, the height profile was measured in 5 points (2 in the
peripheral and 3 in the central region of the cell) along a line (n=25
for each experimental condition). Height values were pooled
according to the different experimental conditions, the mean + SE
values were calculated and statistical comparison performed by the
one-way Anova.
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Figure 1. a) Inverted microscope images and (b) mean + SE values
of cell-free areas of control (CTRL) and O;-treated HeLa cells at
different steps of the wound healing assays. Scale bars: 100 pm.

--

Figure 2. Fluorescence microscopy images of control (a), O; 10 pg/mL (b) and O; 35 pg/mL (c) treated HeLa cells labelled for actin fil-
aments (green). Control (d), O; 10 pg/mL (e) and O; 35 pg/mL (f) treated HeLa cells immunolabelled for BrdU (green). DNA was

counterstained with Hoechst 33342 (blue). Scale bars: 20 pm.
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Figure 3. SEM images of control (a) O; 10 pg/mL (b) and O3 35 pg/mL (c) treated HeLa cells 24 h post wounding; insets: high mag-
nification images of the dashed-line boxed areas; cell in interphase are flat with protruding microvilli, while mitotic cells (arrows)
detach from the growth surface and become spherical in shape; scale bars: 25 pm; inset bars: 5 pm. Mean + SE values of (d) cell area
and (e) cell irregularity index at 2 h and 24 h from treatment; no statistical difference was found for both the cell area (2 h, P=0.605;
24 h, P=0.687) and irregularity index (2 h, P=0.850; 24 h, P=0.673).
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Figure 4. Representative AFM images of control (a) O; 10 pg/mL (b) and O; 35 pg/mL (c) treated HeLa cells 2 h post treatment. d,e)
Mean * SE values of cell height measured at AFM in control (CTRL) and in O;-treated cells. The asterisk indicates statistical signifi-
cance (P=0.002), whereas no significant difference was found among samples for the peripheral region both after 2 h and 24 h (P=0.241
and P=0.522, respectively), and for the central region after 24 h (P=0.565).
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Results and Discussion

Cell movement plays a basic role in cell and tissue homeostasis
as well as in many physiological and pathophysiological
processes.*! Altered regulation of cell motility is involved in sever-
al disorders, and migration of cancer cells is considered as a pre-
requisite for tumour metastasis.*> Under our experimental condi-
tions, the wound healing assay (Figure 1a) showed that the migra-
tion rates in control and O;-treated HeLa cells were similar at each
time point considered (2 h, 6 h and 24 h) after gas exposure (Figure
1b).

In eukaryotic cells, reorganization of the cytoskeletal actin is
the main responsible for cell shape modification and movement by
driving the protrusions that push the membrane forward and lead
to pseudopod extension.”® After fluorescent phalloidin labelling, no
evident changes in actin organization were observed in migrating
cells at the wound edge after O; exposure compared to the controls
(Figure 2 a-c). This is consistent with the observations at SEM that
demonstrated an unchanged morphological pattern in control and
Os-treated cells (Figure 3 a-c): in all samples, HeLa cells were flat-
tened and irregularly polygonal in shape (apart from the sphere-
shaped mitotic cells), and showed numerous filopodia and lamel-
lipodia. The mean cell areas measured in SEM images were similar
in the three experimental conditions at both 2 h and 24 h post-treat-
ment (Figure 3d). Also the cell thickness at the peripheral and cen-
tral region, as evaluated by AFM, was similar in control and
Os-treated cells (with the only exception of the cells treated with
O, 35 pg/mL after 2 h from gas exposure, that were transiently
thicker than the controls in their central region) (Figure 4). Thus,
O, treatment did not affect the volume of the cells along the wound
edge, and quantitative evaluation of their surface roughness con-
firmed that also the surface protrusions did not significantly
change (Figure 3e).

0, is a highly oxidizing gas and reactive oxygen species (ROS)
are known to regulate cytoplasmic protrusions by controlling actin
dynamics in a dose-dependent manner, high levels inducing pro-
tein depolymerization while low levels promoting polymeriza-
tion.*4¢ Previous experiments’’ demonstrated that exposure to low
O, concentrations causes a minimal ROS production, unable to
induce structural or functional alterations in cell organelles includ-
ing mitochondria. However, the O, effect on the polymerization of
cytoskeletal proteins may depend on small local changes in ROS
amounts. It could be therefore hypothesized that the higher oxida-
tive stress caused by exposure to O; 35 pg/mL may induce a tran-
sient cytoskeletal remodelling that undergoes rapid restoration
without affecting the cell periphery that is mainly involved in cell
movement.

Recent findings*’ suggest that cell motility is affected also by
Nrf2; in fact, its repressor factor Keapl is involved in the disas-
sembly of podosomes, known to promote cell motility and interac-
tions;* however, Keapl is unable to play its role when tethered to
Nrf2. It is worth recalling that low O, concentrations induce an
antioxidant response by the Keap1/Nrf2 dependent pathway,'* thus
releasing free Keapl molecules in the cytoplasm. This could
explain why Nrf2 was found to play an antitumour role by reduc-
ing cell migration.*-3?

Tumour invasion not only depends on the cell migration abili-
ty, but also on the cell proliferation rate. In previous studies, we
demonstrated that exposure to low O; concentrations does not
change both death rate'** and proliferation rate of subconfluent
HeLa cells* as well as of other cancer cell lines.”> The present
study shows that mild exposure to O; does not alter the percentage
of BrdU-positive cells (26.92+1.47%, n=1915 in controls;
27.59+1.32%, n=1928 in cells treated with O; 10 pg/mL ;;
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25.81+1.36%, n=1871 in cells treated with O;35 pg/mL ; P=0.690)
or the mitotic index (5.13+1.17% in controls, 5.81£1.05% in cells
treated with O; 10 pg/mL, and 4.62+1.23% in cells treated with
0,35 pg/mL ; P=0.657) along the wound edge (Figure 2 d-f).
These findings provide evidence that the exposure to low O, con-
centrations leaves unchanged the in vitro cell proliferation not only
in sub-confluent populations but also during wound healing, i.e., in
a growth-stimulating condition.

In conclusion, the low O, concentrations used under in vitro
conditions in our study proved not to alter cytomorphology, migra-
tion features or cell proliferation of HeLa cells during wound heal-
ing, thus supporting the notion that O, therapy should not positive-
ly affect tumour cell growth and metastasis. Especially due to the
multiple indirect effects of O,in a living organism, the in vivo con-
ditions are obviously much more complex than those of an in vitro
model; thus, further studies are needed to clarify the consequences
of the exposure to low O; concentrations in tumour-bearing organ-
isms, with particular reference to the possible interference with
chemotherapeutics.3°
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