Proceedings of the 30th National Conference of the Italian Group for the Study of Neuromorphology “Gruppo Italiano per lo Studio della Neuromorfologia” G.I.S.N.

PROCEEDINGS

November 12-14, 2020
University of Torino
Torino (Virtual Event) - Italy
Disclaimer. Whilst every effort is made by the publishers and the editorial board to see that no inaccurate or misleading data, opinion or statement appears in this journal, they wish to make it clear that the data and opinions appearing in the articles or advertisements herein are the responsibility of the contributor or advisor concerned. Accordingly, the publisher, the editorial board and their respective employees, officers and agents accept no liability whatsoever for the consequences of any inaccurate or misleading data, opinion or statement.
The European Journal of Histochemistry was founded in 1954 by Maffo Vialli and published till 1979 under the title of Rivista di Istochemica Normale e Patologica, from 1980 to 1990 as Basic and Applied Histochemistry and in 1991 as European Journal of Basic and Applied Histochemistry. It is now published under the auspices of the University of Pavia, Italy. The European Journal of Histochemistry is the official organ of the Italian Society of Histochemistry and a member of the journal subcommittee of the International Federation of Societies for Histochemistry and Cytochemistry (IFSHC), and has been an influential cytology journal for over 60 years, publishing research articles on functional cytology and histology in animals and plants.

The Journal publishes Original Papers, Technical Reports, Reviews, Brief Reports, Letters to the Editor, Views and Comments, and Book Reviews concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques; attention is also given to articles on newly developed or originally applied histochemical and microscopical techniques.

Coverage extends to:
- functional cell and tissue biology in animals and plants;
- cell differentiation and death;
- cell-cell interaction and molecular trafficking;
- biology of cell development and senescence;
- nerve and muscle cell biology;
- cellular basis of diseases.

Editor in Chief
Carlo Pellicciari (University of Pavia, Italy)

Editors
Marco Biggiogera (University of Pavia, Italy)
Manuela Malatesta (University of Verona, Italy)

Editorial Board
F. Cima, Padua (Italy), L. Cocco, Bologna (Italy), A.C. Croce, Pavia (Italy), G. Cutroneo, Messina (Italy), E. Falcieri, Urbino (Italy), A. Franchitto, Rome (Italy), M. Harata, Sendai (Japan), P. Hozak, Prague (Czech Republic), Z. Kmiec, Gdansk (Poland), N.M. Maraldi, Bologna (Italy) F.J. Medina, Madrid (Spain), G. Meola, Milan (Italy), S. Modina, Milan (Italy), M. Pavelka, Vienna (Austria), M.T. Perra, Cagliari (Italy), C.A. Redi, Pavia (Italy), G. Rindi, Rome (Italy), S. Shibata, Tokyo (Japan), C. Schoeffler, Vienna (Austria)

Managing Board of the Italian Society of Histochemistry for the years 2018-2021
Elisabetta Falcieri (President)
University of Urbino “Carlo Bo”, Italy
Antonio Franchitto (vice-President)
University of Rome “La Sapienza”, Italy
Francesca Cima (Member)
University of Padua, Italy
Giuseppina Cutroneo (Member)
University of Messina, Italy
Silvia Modina (Secretary)
University of Milan, Italy
Carlo Pellicciari (past-President)
University of Pavia, Italy

Editorial Staff
Nadia Moscato, Managing Editor
Cristiana Poggi, Production Editor
Tiziano Taccini, Technical Support

2019 Impact factor: 2.172. ©JCR Clarivate Analytics
30th National Conference of the Italian Group for the Study of Neuromorphology
“Gruppo Italiano per lo Studio della Neuromorfolegia” G.I.S.N.

PROCEEDINGS

November 12-14, 2020
University of Torino
Torino (Virtual Event) - Italy

Conference Chair
Giancarlo Panzica
Department of Neuroscience Rita Levi Montalcini
University of Torino, Torino, Italy

Organizing Committee

Enrica Boda
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Marina Boido
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Stefano Gotti
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Alessandro Mauro
Department of Neuroscience Rita Levi Montalcini, University of Torino
Luca Pradotto
Department of Neuroscience Rita Levi Montalcini, University of Torino

Stefania Raimondo
Department of Clinical and Biological Sciences, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Alessandro Vercelli
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Guest Editors

Enrica Boda
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Giancarlo Panzica
Department of Neuroscience Rita Levi Montalcini, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Stefania Raimondo
Department of Clinical and Biological Sciences, University of Torino
Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano

Seyed Khosrow Tayebati
School of Medicinal Sciences and Health Products, University of Camerino,
Camerino, Italy

Sponsorship

Italian Society of Anatomy and Histology (S.I.A.I.)
Zeiss Italia
Table of Contents

Proceedings of the 30th National Conference of the Italian Group for the Study of Neuromorphology
“Gruppo Italiano per lo Studio della Neuromorfologia” G.I.S.N.

PROCEEDINGS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Main lectures</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Session I</td>
<td>Brain plasticity: from normal brain function to pathology</td>
<td>3</td>
</tr>
<tr>
<td>Session II</td>
<td>Neurodegeneration and neuroprotection</td>
<td>5</td>
</tr>
<tr>
<td>Session III</td>
<td>Peripheral neuropathies and nerve regeneration</td>
<td>8</td>
</tr>
<tr>
<td>Session IV</td>
<td>The CNS as a target for endocrine disruptors and other pollutants</td>
<td>11</td>
</tr>
<tr>
<td>Session V</td>
<td>Brain and metabolism</td>
<td>13</td>
</tr>
<tr>
<td>Session VI</td>
<td>Novel approaches for neuroanatomical/morphological studies in the human nervous system</td>
<td>14</td>
</tr>
<tr>
<td>Session VII</td>
<td>Enteric nervous system and gut-brain axis</td>
<td>17</td>
</tr>
<tr>
<td>Session VIII</td>
<td>Brain tumors and chemotherapy-induced neurotoxicity</td>
<td>18</td>
</tr>
</tbody>
</table>
INTRODUCTION

A BRIDGE AMONG HISTORY AND NEW MULTIDISCIPLINARY APPROACHES: THE ROLE OF G.I.S.N. IN THE FIELD OF NEUROMORPHOLOGY

G.C. Panzica¹,², F. Michetti³, S.K. Tayebati³, R. De Giorgio³, R. Mariotti⁶, A. Pacini⁷, M. Quartu⁸

¹Department of Neuroscience, Rita Levi Montalcini, University of Torino, Italy; ²Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy; ³Department of Neuroscience, Università Cattolica del S. Cuore, Roma, Italy; ⁴Human Anatomy Section, School of Pharmacy, University of Camerino, Italy; ⁵Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy; ⁶Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Italy; ⁷Department of Experimental and Clinical Medicine, Anatomy Section, University of Firenze, Italy; ⁸Department of Biomedical Sciences, University of Cagliari, Italy

This special issue collects the abstracts of the lectures and communications presented at the 30th National Conference of the Italian Group for the Study of Neuromorphology (G.I.S.N.), a scientific association founded to promote and develop neuroscience education and research preferentially related to the field of morphology of nervous system. The community of Italian scientists is particularly involved in the field of Neurobiology and Neuroanatomy, due to a long historical tradition starting with Gabriele Falloppia (1523-1562) and Bartolomeo Eustachio (1500-1574) that described the organization of the ear, Marcello Malpighi (1628-1694), who applied the recently discovered microscope to the study of the nervous system, Giovanni Battista Morgagni (1682-1771) who linked brain alterations to neurological diseases, and Luigi Rolando (1773-1831) who described human cerebral convolutions. Neuroanatomical studies had a great boost with the development of fixation and staining techniques, and the contribution of Camillo Golgi (1843-1926) in this field was a milestone recognized by the award of the Nobel Prize (1906). This long tradition of neuroanatomical studies has been perpetuated by several disciples of these giants of the early period of medical studies and has come down to our days, as evidenced by the Nobel Prize awarded in 1986 to Rita Levi Montalcini (1909-2012). In almost all Italian universities, anatomists are engaged in the study of the nervous system from different points of view, with experimental studies involving animal models of neurological diseases, the link between neural structures and behavior, the effects of the environment or drugs on neural circuits and structures. Several researches are now devoted to fMRI studies that seek to elucidate the connectivity or modifications of the human brain under normal and pathological conditions. These different approaches converge towards the actually consolidated awareness of the unique peculiarity of the nervous system, where the structure is intimately joined to the function, laying the foundations of the growing field of neuroscience nowadays embracing central, peripheral and enteric nervous systems. All these lines of research, and many others, are represented in our group and have been discussed in our meetings. We hope that reading these abstracts can give a picture of the state of the art of Neuromorphology in Italy.

G.I.S.N. Board of Directors
PRION AND PRION-LIKE DISEASES: EVIDENCE OF PROTEIN MISFOLDING PROPAGATION IN HUMANS

Giorgio Giaccone

Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy

Many common neurodegenerative diseases such as Alzheimer’s disease (AD) are characterized by the accumulation of misfolded proteins in the central nervous system. For instance, AD and cerebral amyloid angiopathy are characterized by extracellular deposition of Aβ-amyloid (in AD in association with intraneuronal accumulation of the microtubule associated protein tau), Parkinson disease by intraneuronal accumulation of α-synuclein, atypical parkinsonisms such as progressive supranuclear palsy and corticobasal degeneration, and a subset of cases of frontotemporal dementia by tau formation. Hence, these misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS is required for a definite diagnosis. A group of disorders named transmissible spongiform encephalopathies or prion diseases, are caused by a misfolded form of the prion protein, named prions, or PrPSc. Prion diseases are transmissible as the protein with abnormal conformation is able to convert the normal protein to the pathological form. A puzzling aspect of prion diseases lies in the fact that the same protein (PrPSc) can cause a variety of diseases which are phenotypically heterogeneous. For instance, sporadic Creutzfeldt-Jakob disease, the most common human prion disease, are currently classified in six subgroups and every form has its own peculiar features, in terms of clinical manifestations and neuropathological features. In recent years, several lines of evidence indicate that the ability to transmit misfolding to their native counterparts is not limited to PrP but is shared, although with different efficiency, by the proteins that accumulate in AD, Parkinson disease, frontotemporal dementia. This implies that two innovative diagnostic techniques, named Protein Misfolding Cyclic Amplification (PMCA) and Real Time Quaking Induced Conversion (RT-QuIC), that are able to detect traces of the misfolded proteins in CSF and in other peripheral tissues mimicking in vitro in a very rapid manner the pathological processes of protein misfolding which occur in vivo may be extended from prion diseases to more common aging-related neurodegenerations. On the other hand, the potential risk of transmission is also extended and was recently confirmed for Aβ by the recognition of iatrogenic forms of cerebral amyloid angiopathy linked to neurosurgical procedures performed decades before the onset of the pathology.

NEUROANATOMICAL BASIS OF BRAIN ENERGY METABOLISM IN THE MAMMALIAN BRAIN

Corrado Cali

Dept. of Neuroscience and Neuroscience Institute Cavaliere Ottolenghi, Turin, Italy

Understanding the mammalian brain’s computational efficiency represent, to date, an ambitious challenge. Growing evidence suggests that the key to unveil such mystery relies in its complex energy management system. Brain energetic demand in particular, seemed to rely on the metabolism of glucose. In the early 90s, the discover that lactate, an intermediate product of the glucose metabolic pathway, plays a central role in neuronal energy supply, brought a paradigm shift into the field. More than 20 years of research highlighted the importance of the astrocyte-neuron lactate shuttle (ANLS), a novel hypothesis describing how glia acts a metabolic bridge between vasculature and neurons (the so called neuro-glia-vasculature unit, or NGV). Increasing evidence highlighted the central role of lactate in the physiology of the brain, as well as its benefits in a number of pathological conditions, including stroke, epilepsy and drug addiction. Nevertheless, cellular and molecular mechanisms through which lactate is exerting its function remains still unclear. Although lactate is a well-known byproduct of glycolysis, a series of recent studies have highlighted how lactate derived from glycogen, a storage mechanism of glucose expressed specifically in astrocytes, is pivotal for learning and memory. Following this alternative pathway, we have decided to investigate the localization of glycogen and analyze its distribution in several brain areas and under different physiological and pathological conditions, in order to infer the possible sites of lactate utilization in the brain. The complex structural arrangements between neurites and glial processes can be hardly resolved with conventional microscopy methods, therefore we decided to adapt microconnectomics techniques based on 3D electron microscopy (3DEM) to extract high-resolution three-dimensional models of brain parenchyma to conduct these assessments. We took extensively advantage of the most recent visualization techniques, and developed virtual reality (VR) tools to perform complex analysis in 3D. This approach is similar to what early observers like Golgi and Ramon y Cajal used to do, by hypothesizing the functional role of brain components by their morphology but revised using much higher resolution imaging techniques and VR visualization.
SESSION I - BRAIN PLASTICITY: FROM NORMAL BRAIN FUNCTION TO PATHOLOGY

IMMATURE NEURONS IN THE AMYGDALA OF CAT AND MARMOSET

Ghibaudi M1,2, La Rosa C1, Cavallo F1, Bonfanti L1,2
1Neuroscience Institute Cavalleri Ottolenghi (NICO), Orbassano; 2Dept. of Veterinary Sciences, University of Turin, Italy

Brain plasticity is important for preventive and therapeutic approaches in neurological diseases. In mammals, the genesis of new neurons (adult neurogenesis) is spatially restricted to small stem cell niches and appears to be reduced from mice to humans. A population of undifferentiated, "immature" neurons (INs) is known to be present in the mouse paleocortex (piriform cortex); these INs are generated pre-natally, do not divide in adulthood, yet, retain expression of markers for immaturity. Recently, we showed that cortical INs may represent a reservoir of "young" cells in the neocortex of large-brained mammals, also extending in subcortical regions. Here, we focused on amygdala of two mammalian species endowed with different density of cortical INs: the gyrencephalic cat, showing high IN density, and the lissencephalic marmoset, a non-human primate with very low amount of INs. Three young-adult cats and three adult marmosets were considered. Whole brain hemisphere and amygdala volumes were evaluated in both species, by using histologically-stained coronal sections scanned with Axiocan. To study INs, both quantitative and qualitative analysis were carried out: doublecortin was employed as a marker for immaturity and Ki-67 antigen to check for cell proliferation. Then, stereological cell countings were performed using virtual Fractionator on StereoInvestigator software. Populations of INs were found in the amygdala of both species (in contrast with very low amount reported in mouse), with a significant higher presence in marmoset. Hence, a mammal with low amount of cortical INs (marmoset) shows higher density of INs in the most prominent subcortical region, and vice versa. This study confirms that gyrencephalic mammals, generally characterized by reduction in stem cell-driven adult neurogenesis, rely on populations of young neurons within brain regions underlying important cognitive functions.

MORPHO-FUNCTIONAL AND CLINICAL CORRELATES OF THE SUPERIOR COLLICULUS

Cirillo G1,2, Tinazzi M2, Papa M1
1Division of Human Anatomy - Neuronal Networks Morphology Lab, University of Campania "Luigi Vanvitelli", Naples; 2Neurology Unit, Movement Disorders Division, Dept. of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy

Higher brain functions represent an emerging property of the complex organization of the central nervous system (CNS) and its cortico-subcortical networks. The intrinsic circuitry of the superior colliculus (SC), a laminated structure of the dorsal midbrain, integrates visual stimuli from retina (sensory cells) with conjugate ocular movements, saccades and head turning (premotor neurons). Tecto-spinal projections, that terminate on the motor neurons of the upper cervical spinal cord, activate neck and arm muscles, orienting responses of the head and eyes. However, the activity of the SC goes well beyond the visuomotor functions: it is central for learning a novel movement but also to detect unpredictable, biologically salient events that can trigger interruption of ongoing behavior and contributing to higher-order decision making. Recently, dysfunction of the nigro-tectal pathway, one of the main afference of SC, has been involved in the pathogenesis of cerebral dystonia (CD), the most common form of adult-onset idiopathic isolated focal dystonia. Experimental reduction of the inhibitory GABAergic input from the S-Npr to the SC results in increased excitability and abnormal burst firing of the visual sensory neurons, a subsequent increased excitability of the premotor cells that finally causes a movement disorder resembling CD. In conclusion, despite its low hierarchical importance, SC represents a crucial structure for human brain functions, a new actor of neurological disease pathogenesis and a novel putative target for treatment of dystonic patients.

BDNF AND TRKB IN THE MESOCORTICOLIMBIC SYSTEM OF ROMAN RATS AFTER ACUTE STRESS

Sanna F1, Serra MP1, Podlighe L1, Boi M1, Piludu MA1, Giorgi O1, Corda MG1, Quartu M1
1Dept. of Biomedical Sciences, Section of Cytomorphology, University of Cagliari; 2Dept. of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Italy

The brain-derived neurotrophic factor (BDNF) has a role in the pathogenesis of depression and related deficits in neuronal plasticity as shown by evidence that a reduction of BDNF expression occurs in postmortem brains and serum of depressed subjects and that the BDNF gene is required for the response to antidepressant drugs. The outbred Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats are a model designed to investigate the impact of genetic and environmental factors on the neural substrate of depression. They were selected for rapid (RHA) vs extremely poor (RLA) acquisition of active avoidance, in a shuttle-box. It has been shown that emotional reactivity is the most prominent behavioral difference between the two lines, with the RLA rats being more fearful/anxious than their RHA counterparts. Here, with the aim of assessing the effect of a 15 min session of FS, by means of Western blot and immunohistochemistry, we use the Roman rats to investigate on the immunohistochemical occurrence of BDNF and its receptor trkB in the ventral tegmental area (VTA), nucleus accumbens (Acb) (core and shell) and prefrontal cortex (PFC). WB analysis indicates that levels of BDNF patently and markedly changed after FS as compared to controls and between the examined areas; thus, the VTA and Acb core showed lower BDNF expression level, and the PFC higher BDNF expression level (in both the anterior cingulate and infralimbic/prelimbic areas) in RLA vs RHA rats. As for the trkB, after FS its expression paralleled that of BDNF, with the exception of the PFC where changes were observed only in the infralimbic area. In tissue sections, BDNF- and trkB-like immunoreactive (LI) material labelled neuronal cell bodies, proximal processes and varicose nerve fibers, with an uneven distribution in the VTA, Acb and PFC. We have recently reported that acute stress, i.e. forced swimming (FS), has effects on the expression of BDNF and trkB in the hippocampus of Roman rats. The results obtained provide evidence that a differential expression of BDNF also occurs in the mesocorticolimbic system.
of RLA vs RHA rat brains, and are consistent with the hypothesis that the differences in the BDNF/trkB signaling and neuroplasticity are involved in the susceptibility of RLA rats vs resilience of RHA rats to stress-induced depression.

PURE SPREADING OF FOCALLY INDUCED LONG-LASTING SEIZURES WITHIN LIMBIC SYSTEM DESTROYS BASAL FORBRAIN CHOLINERGIC NUCLEI

Biagioni F,1,2 Bucci D1, Moyanova S1, De Fusco A1, Giorgi FS2, Fornai F1,2

1I.R.C.C.S. I.N.M. Neuromed, Pozzilli (IS); 2Dept. of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

Status epilepticus (SE) of limbic onset might cause degenerative phenomena in different brain structures, and may be associated with chronic cognitive and EEG effects. In the present study SE was evoked focally by microinjuring picomolar doses of cycloliazide-bicuculline into the anterior extent of the piriform cortex (APC) in rats, the so-called area tempestas, an approach which allows to evaluate selectively the effects of seizure spreading through the natural anatomical circuitries up to secondary generalization. In the brain of rats submitted to SE we analyzed neuronal density, occurrence of degenerative phenomena (by Fluoro-Jade B-FJB- staining) and expression of heat shock protein-70 (HSP-70) in the piriform cortex, the hippocampus and ventromedial thalamus. We further analyzed in detail, the loss of cholinergic neurons, and the presence of FJB- and HSP-70 positive neurons in basal forebrain cholinergic areas, i.e. the medial septal nucleus (MSN, Ch1), the diagonal band of Broca (DBB, Ch2 and Ch3) and the Nucleus basalis of Meynert (NBM, Ch4). In fact, these nuclei are strictly connected with limbic structures, and play a key pivotal role in different cognitive functions and vigilance. Although recent studies began to investigate these nuclei in experimental epilepsy and in persons with epilepsy, conflicting results were obtained so far. We showed that after severe and long-lasting, focally induced limbic SE there is a significant cell loss within all of the abovementioned cholinergic nuclei ipsi- and contra-laterally to the infusion site. In parallel, these nuclei show also FJB and heat shock protein-70 expression. Those effects vary depending on the single nucleus assessed and on the severity of the SE seizure score. We also showed the occurrence of cell loss and degenerative phenomena in limbic cortex, hippocampus and limbic thalamic areas. These novel findings show direct evidence of SE-induced neuronal damage which is solely due to seizure activity ruling out potential confounding effects produced by systemic pro-convulsant neurotoxins. A damage to basal forebrain cholinergic nuclei, which may underlie cognitive alterations, is documented for the first time in a model of SE triggered focally.

α-SYNUCLEIN IMBALANCE AS A POTENTIAL MARKER OF EPILEPSY

Amadeo A1,2, Milani N1, Modena D1, De Santis D3, Garbelli R3, Ascagni M4, Colombo G5, Mazzetti S1,2, Becchetti A1, Cappelletti G1,2

1Dept. of Biosciences, Università degli Studi di Milano, Milan; 2Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan; 3Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico “C. Besta”, Milan; 4UNITECH NOLIMITS, University of Milan, Milan, Italy; 5Dept. of Biotechnology and Biosciences, University of Milano-Bicocca and NeuroMI Milan Center of Neuroscience; 6Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy

α-Synuclein (syn) is a protein widely expressed in brain tissue, mainly in presynaptic terminals. Its physiological role and its contribution to pathologies, such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), are unclear. Both PD and DLB, besides α-syn accumulation, show sleep dysfunction and EEG alterations, which in DLB frequently become epileptic seizures. Interestingly, recent studies unraveled the alteration of α-syn expression both in animal model and in human epileptic brains, suggesting the involvement of α-syn imbalance in the pathogenesis of epilepsy. Therefore, our aim was to analyze α-syn expression in a murine model of a genetic sleep-related epilepsy and in human epileptic brain. In particular, in wild type (WT) and transgenic (TG) mice we analyzed α-syn immunocalization in three different types of synaptic terminals identified by means of the relative vesicular neurotransmitter transporters (VGlut1, VGAT, VACHt) in sample cortical and striatal areas, such as Prefrontal (PFC) and Somatosensory cortex (SS) and Corpus Striatum (CS). Our results revealed an imbalance of α-syn expression in PFC and CS of TG mice. Moreover, CS displayed an increasing number of both VGAT and VACHt immunopositive synaptic terminals expressing α-syn in TG mice, suggesting an alteration of GABAergic and cholinergic circuits. Subsequently, post-mortem human brain sections were used to set the experimental protocols for the detection of α-syn both in control subjects and in patients affected by PD as positive controls for synucleinopathy, revealing the synaptic localization of α-syn in controls and the presence of Lewy bodies and neurites, as expected, in PD patients. On these bases, we set up experiments to investigate its expression in post-surgical human tissues from patients with Temporal Lobe Epilepsy due to Hippocampal Sclerosis (TLE-HS), the most prevalent form of chronic focal epilepsy, and with Focal Cortical Dysplasia (FCD), a developmental cortical malformation. Preliminary results showed: i) a severe loss of α-syn staining in sclerotic hippocampi, due to the synaptic density reduction; ii) the pathological white matter in FCD displayed α-syn immunopositive baskets surrounding dysmorphic neurons not correctly migrated. The present study provides new insight to understand with a completely new approach the pathogenesis and/or the histopathological consequences of different types of epilepsy.
SESSION II - NEURODEGENERATION AND NEUROPROTECTION

α-SYNUCLEIN OLIGOMERS IN SKIN BIOPSY AS BIOMARKER FOR PARKINSON’S DISEASE

Mazzetti S1,2, Baselli MJ1,2, Ferri V1,3, Cerada E4, Calogero AM1,2, Sacilotto G3, Cilia R1, Rolando C1, Pezzoli G2,3,*; Cappelletti G1,5,6

1Dept. of Biosciences, Università degli Studi di Milano, Milan; 2Fondazione Grigioni per il Morbo di Parkinson, Milan; 3Parkinson Institute, ASST Gaetano Pini-CTO, Milan; 4Clinical Nutritional Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia; 5Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy

*The authors equally contributed to the study

The pathological hallmark of Parkinson’s disease (PD) is α-Synuclein inclusion formation in the brain areas affected by neurodegeneration. PD is now considered as a multisystemic disorder and α-Synuclein-related pathology is also present in the peripheral nervous system, that could be exploited to unravel novel disease-related mechanisms. α-Synuclein oligomers have recently been indicated as ‘a new hope’ in the search of a reliable biomarker for synucleinopathies, including PD and multiple system atrophy. The oligmeric species of α-Synuclein consist in small aggregates of the protein, which occur in the early stage of the pathology, preceding and probably triggering the formation of the fibrillar conformation present in Lewy bodies. In this present study we explored α-Synuclein oligomers using the proximity ligation assay (PLA), an innovative approach to detect in situ protein interactions, in the peripheral nervous system by focusing on skin biopsies. We conducted a comparative analysis in a cohort of PD patients (n=38) and healthy subjects (n=29), including a subgroup of monoyzotic twins discordant for the disease (n=19). In this case-control study, we observed previously undetected α-Synuclein oligomers within synaptic terminals of aonomic fibers in skin biopsies and proposed a method for their quantification, namely the PLA score. This score was found to have good sensitivity (82%), specificity (86%) and positive predictive value (89%). Intriguingly, although no difference in median values was detected between consecutive healthy controls and healthy twins, the prevalence of healthy subjects positive for PLA score was significantly greater in twins than in the consecutive cohort (47% vs 14%). This suggests that genetic predisposition is important, but not sufficient, in the aetiology of the disease and strengthens the contribution of environmental factors. All these finding endorse the hypothesis that α-Synuclein oligomers could be used as a reliable diagnostic biomarker for PD. Furthermore, this important starting point opened the way to investigate the molecular mechanisms involved in triggering α-Synuclein oligomerization and aggregation, including cytoskeletal remodeling in the peripheral and central nervous system.

PROTECTIVE EFFECTS OF PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE IN AN IN VITRO MODEL OF ALS

Maugeri G1, D’Amico AG2, D’Agata V1

1Dept. of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences,University of Catania; 2Dept. of Drug Sciences, University of Catania, Italy

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs). Not all MNs are susceptible to degeneration in ALS: in fact neurons of the oculomotor nucleus, controlling eye movements, are more resistant as compared to hypoglossal nucleus MNs. The analysis of post mortem samples from ALS patients has shown a differential genomic pattern between the two nuclei. Among identified genes, adenylyl cyclate activating polypeptide 1 (ADCYAP1) gene, encoding for pituitary adenylate cyclase-activating polypeptide (PACAP), was found over-expressed in the oculomotor vs hypoglossal nucleus, suggesting that the peptide could exerts a role on MNs in ALS. In the present study, we investigated the potential ability of PACAP to counteract MNs degeneration, by using a motor neuron like hybrid cell line (NSC 34) expressing human superoxide dismutase (SOD1) G93A mutation, as an in vitro model of ALS. Our results showed that PACAP promotes cell viability following serum deprivation, via EGFR transactivation mediated by protein kinase A stimulation. Furthermore, PACAP significantly decreased hypoxia-induced mutant SOD1 accumulation by modulating the autophagy process through the activation of the MAPK/ERK survival signaling pathway. Overall, our data demonstrated that PACAP exerts a protective role in MNs during ALS progression, suggesting that the different vulnerability of some cranial nerve motor nuclei could be due to differential expression of PACAP and its receptors in MNs.

EPigenetic modulation in SOD1(G93A) ALS mice

Bankole M1, Scambi I1, Muccilli M1, Virila F1, Pizzi M2, Mariotti R1

1Dept. of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona; 2Dept. of Molecular and Translation Medicine, University of Brescia, Brescia, Italy

ALS is a neurodegenerative disease that affects motor neurons (MNs). Transcriptional dysfunction which involves a defect in histone homeostasis has recently been implicated in MN degeneration. Histone homeostasis strongly depends on the activity of histone deacetylases (HDACs). These enzymes, which includes an important group known as sirtuins (SIRT1) have been implicated in cellular processes such as cell death. Recent studies from our lab have demonstrated that the combination of two epigenetic drugs, MS-275 (which inhibits HDACs) and Resveratrol (an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway) provided neuroprotective effects and improved motor performance in ALS mice. However, MS-275 is currently not approved for clinical trials. Several studies have indicated that Valproate, another pharmacological inhibitor of HDACs, improves cell survival by promoting histone acetylation, gene transcription and protein synthesis in cancer and ischemic stroke, and is currently been used in clinical trials. To improve the translational power of this approach, the overall aim of this study was to investigate the efficacy of MS-275 replacement with
Valproate, and explore for the first time in ALS mice, the effect of a combination of these two epigenetic drugs, Valproate and Resveratrol, to modulate histone homeostasis and directly protect MNs from neurodegeneration. Experiments were performed using SOD1(G93A) mice separated into treated and control groups. Animals in the treated group were administered Valproate (40 µg/kg) and Resveratrol (136 µg/kg) in combination every day from post-natal day 50 until the end stage of the disease. Behavioural tests were carried out to test motor function. Stereological count of MNs in the lumbar tract was performed to determine MNs survival and the acetylation state of histone 3 (H3) was examined by immunofluorescence staining. Western blot was carried out to detect the acetylation of RelA protein in the lumbar tract. Overall results showed that the drugs improved motor performance of treated animals and significantly delayed the loss of motor function. Stereological count showed drugs protected the MNs from death and a significant increase in the MNs number was observed in the treated group. Immunofluorescence revealed a decrease in acetylation of H3 in the control group and a restoration of H3 acetylation after drug treatment, while Western blot analysis also showed a restoration of RelA protein acetylation state.

EFFICACY EVALUATION OF THE GHRH AGONIST MR409 IN A SMA MURINE MODEL

Caretto A1,2, Gesmundò I1, Schellino R1,2, Schally AV1, Boido M1,2, Granata R2, Vercelli A1,2

1Dept. of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy; 2Neuroscience Institute Cavaleri Ottolenghi, University of Turin, Orbassano TO; 3Division of Endocrinology, Diabetes, and Metabolism, Dept. of Medical Sciences, University of Turin, Turin, Italy and 4Division of Endocrinology, Dept. of Medicine, Miller School of Medicine, University of Miami, Miami FL USA

Spinal Muscular Atrophy (SMA) is a pediatric neurodegenerative disease caused by the deletion or mutation of the telomeric gene “survival motor neuron 1” (SMN1), resulting in the loss of MNs in the brainstem and in the spinal cord. Patients also show a progressive skeletal muscular atrophy and neuromuscular junction (NMJ) defects. Nowadays, despite their effectiveness, SMN-dependent available therapies have different limitations (difficult administration, several adverse effects, high costs and poor efficacy in milder patients or in late-treated people): investigating SMN-independent treatments and targeting other (peripheral) districts could be a turning point to bypass some of these crucial aspects. Here we focused on skeletal muscles, evaluating the role of MR409, a growth hormone-releasing hormone (GHRH) agonist that has already shown a remarkable activity in preventing apoptosis and proteolysis in an in vitro model of muscle atrophy. To this aim, from postnatal day 2 (P2) to P12, we daily administered vehicle or MR409 (1 mg/Kg and 2 mg/Kg) to SMNdelta7 mice (a well-known murine model of SMA). We observed a progressive weight gain, especially with the highest dose, as well as a significant improvement in motor behavior. Proportionally to the administered dose, these promising results positively correlated with histological and molecular analyses on quadriceps and gastrocnemius, respectively a proximal and a distal hindlimb skeletal muscle, sequentially affected in the pathology. Indeed, H&E staining showed a significant increase in the size of the muscular fibers; moreover, immunofluorescence analyses on NMJs revealed their increased maturation (i.e., a higher monoinnervation) and a reduced denervation of the endplates. Finally, molecular analyses exhibited an enhanced expression of different isoforms of myosin heavy chains (MYH1, MYH2, MYH7 and MYH8) and of markers of myogenesis and muscular damage repairing (respectively, Myogenin and MyoD1), as well as a remarkable downregulation of MuRF1 and Atrogin-1 (whose increased expression seems correlated with muscular atrophy). Thus, our results suggest MR409 as a new promising therapeutic approach for the treatment of SMA, possibly in combination with SMN-dependent therapies.

ASC-EXOSOMES ADMINISTRATION: A THERAPEUTIC APPROACH FOR ALS AND SMA

Virtà F1, Dabrowska S1,2, Scambi I1, Turano E1, Bankole M1,2, Boido M1,2, Mariotti R1

1Dept. of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; 2NeuroRepair Dept., Mossakowski Medical Research Centre, PAS, Warsaw, Poland; 3Dept. of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy; 4Neuroscience Institute Cavaleri Ottolenghi, University of Turin, Orbassano TO, Italy

Therapeutic strategies for fatal neurodegenerative diseases as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have currently provided little or no satisfactory results. Interest in stem cells for the treatment of neurodegenerative disorders is increasing and could represent a promising approach thanks to their beneficial action that seems to be due to the paracrine release of exosomes, main mediators of intercellular communication. Given their ability to stimulate the nerve regeneration, synaptic plasticity and neuronal protection, our group also demonstrated that exosomes isolated from adipose mesenchymal stem cells (ASC-exosomes) were involved in cell adhesion and negative regulation of the cells apoptotic process in an in vitro model of ALS, thanks to the release of their content, especially proteins, miRNA and mRNA. In addition, we tested and demonstrated that repeated administrations of ASC-exosomes delivered by intravenous injections exert a neuroprotective effect in the SOD1(G93A) murine model of ALS. To further investigate the beneficial effects of ASC-exosomes, in our recent study the administration has been tested via intranasal, as a different and non-invasive administration route, in the SOD1(G93A) mice and via intracerebroventricular delivery in the SMN 7 murine model, the most widely used model of SMA. Indeed, despite these two neurodegenerative diseases are caused by different pathogenetic mechanisms and affect different targets, they share some pathological dysfunctions, they are both characterized by the progressive loss of motor neurons (MNs) in the spinal cord and brainstem and they both lead to a progressive and highly disabling motor decline. The results showed that ASC-exosomes could improve the motor performance of animals, evaluated by specific motor tests both in treated SOD1(G93A) and SMN 7 mice; they could also decrease the astrocytes activation and protect lumbar spinal cord MNs from neurodegeneration, validated by a significant reduction in cleaved caspase-3 activation observed in SMA spinal cord after treatment. Moreover, in the peripheral tissues the outcomes showed a higher innervated neuromuscular junctions’ number and an attenuated skeletal muscle atrophy in the treated SOD1(G93A) group. These data could allow to better understand the mechanisms underlying ALS and SMA and to evaluate the promising use of ASC-exosomes as a therapy in neurodegenerative diseases.
MITOCHONDRIAL ALTERATIONS IN SPINAL MUSCULAR ATROPHY

Stanga S1, Pavarino G1, Monteleone F1, Pergolizzi B2, Boido M1, Vercelli A1

1Neuroscience Institute Cavaleri Ottolenghi, University of Turin, Orbassano TO and Dept. of Neuroscience Rita Levi Montalcini, University of Turin, Turin; 2Dept. of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, Orbassano TO, Italy

Spinal Muscular Atrophy (SMA) is due to a mutation/deletion of the Survival Motor Neuron 1 (SMN1) gene which affects motor neurons (MNs) in children and young adults following a decrease in the levels of the functional SMN protein; this results in motor impairment, muscle atrophy and premature death. The current experimental therapies for SMA aim at restoring SMN protein levels: Spinraza-Biogen, Zolgensma-AveXis/Novartis and Risdiplam-Genentech/Roche have been approved by the Food and Drug Administration. However, their long term effects are still under evaluation, especially in adults. Although the genetic cause of SMA has been identified, many aspects of its pathogenesis remain elusive and novel biological targets are investigated to develop new therapeutics and to monitor the efficacy of the existing treatment. We focus on mitochondria since already at early stages in SMA their function, number, area and transport are significantly altered in axons of spinal MNs. We characterized subcellular and mitochondrial alterations (such as size, amount, area and cristae length and density) in MNs from TEM mages of the SMA mouse model SMNdelta7 compared to age-matched control mice. By fractionation, we isolated mitochondria from the spinal cord of mice at postnatal day 7 and after 2D gel and MALDI-TOF mass spectrometry we identified differentially expressed proteins and, after enzymatic assays, dysfunctional proteins in SMA. Moreover, in order to better study the mechanisms underpinning mitochondria dysfunctions, we cultured primary fibroblasts (MEFs) and we stained mitochondria with the MitoTracker before performing a time-lapse live imaging by confocal microscopy. From the multidimensional quantitative image analysis we evaluated the differences in mitochondria number, distribution and trafficking. Briefly, mitochondrial morphology and dynamics, analyzed from TEM images of SMNDelta7 pups and by the tooset MINA from ImageJ in MEFs, revealed severe alterations of both mitochondrial networks and anatomical structures. The defects that we described may contribute to SMA disease pathogenesis. Interestingly, since mitochondria take part in a plethora of processes in order to preserve cellular homeostasis and genomic integrity and their dysfunctions are reported in other neurodegenerative diseases, they could represent a potential therapeutic target to implement SMN-dependent therapies.

THE ENZYME A20 IN A MURINE MODEL OF DEMYELINATION

Montarolo F1,2,3, Perga S1,2,4, Parolisi P1,4, Vitacolonna A1, Martire S1,2, Boda E1,4, Bufo A1,4, Bertolotto A1,2

1Neuroscience Institute Cavaleri Ottolenghi (NICO), Orbassano TO; 2Neurobiology Unit, Neurology – CReSM (Regional Referring Center of Multiple Sclerosis) AOU San Luigi Gonzaga, Orbassano TO; 3Dept. of Molecular Biotechnology and Health Sciences, University of Turin; 4Dept. of Neuroscience “Rita Levi Montalcini” University of Turin; 5Dept. of Life Sciences and Systems Biology, University of Turin, Italy.

The ubiquitin-editing enzyme A20, codified by TNFAIP3 gene, is a central gatekeeper in inflammation through the inhibition of the pro-inflammatory factor NF-kB. TNFAIP3 has been identified as a susceptibility gene for several inflammatory and autoimmune disorders such as Multiple Sclerosis (MS). Data demonstrated the A20 down-regulation in blood of MS patients. Close to the well-known role of A20 in the systemic immune system, evidence in human tissues and murine models suggesting a function of A20 also in glial cells are emerging. Based on this evidence, we aim to unveil a possible involvement of A20 in a de- and re-myelination process accompanied with gliosis without the recruitment of peripheral inflammatory infiltrates. To this purpose, we took advantages of a toxin-induced focal reversible demyelination model, based on the injection of lysolecithin in the mouse corpus callosum, where peripheral immune cells do not infiltrate the CNS. We analyzed the corpus callosum of lysolecithin- and vehicle-injected mice sacrificed at different time points to evaluate microglia activation, oligodendrocyte precursor recruitment, oligodendrocyte precursor cells differentiation, and completed remyelination. In particular, mice were sacrificed at 1, 4, 14 and 31 days post injection (dpi). We highlighted that in physiological conditions A20 is expressed at very low levels in the CNS, whereas its expression is upregulated upon lesion in microglia cells. In particular, A20 expressing cells reached a peak of expression in all resident ramified microglial cells during the late phases, when the re-myelination process is ongoing and microglia exert an anti-inflammatory role supporting re-myelination. The results are also supported by RT Real Time PCR analysis. These results suggest that A20, in parallel with its recognized role in the peripheral inflammation, exerts a function also in microglia activation cooperating with the remyelinating processes.

QUANTITATIVE CONFOCAL MICROSCOPY OF REACTIVE ASTROCYTES IN EAE AND RECOVERED ASTROCYTES AFTER MSC TRANSPANTATION

Girolamo F1, Errede M1, Vigo T1, Vougliari-Kokota A1,4, Ortolan J1, Kerlero de Rosbo N1, Bufo A1, Uccelli A1,3, Virgintino D1

1Dept. of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari Aldo Moro, School of Medicine, Bari, Italy; 2IRCCS Ospedale Policlinico San Martino, Genoa, Italy; 3Dept. of Neurosciences, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; 4Dept. of Diagnostics, Hellenic Pasteur Institute, Athens, Greece; 5Dipartimento di Neuroscience Rita Levi Montalcini Neuroscience Institute Cavaleri Ottolenghi, University of Turin, Turin, Italy

Astrogliosis is a prominent feature of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), the murine model of MS. It is well known that astrocytes rapidly change their morphology upon inflammatory activation, overexpressing glial filaments and becoming hypertrophic, with increased thickness and number of processes. The morphology of reactive astrocytes has been described and qualitatively categorized but, alternatively, can be quantified as a continuous variable for parameters such as cell ramification, complexity, and shape. Confocal fluorescence microscopy is an excellent tool for making quantitative measurements in cells and tissues, but very few techniques apply to multiple astrocytes in entire low magnification 3D pho-
PACAP AND VIP COUNTERACT GLIOBLASTOMA AND NEUROBLASTOMA PROGRESSION

D’Amico AG, Maugeri G, D’Agata V

1Dept. of Drug Sciences, University of Catania; 2Dept. of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, Italy

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides largely distributed in the body. They are also involved in some human cancers, including glioblastoma multiforme (GBM) and neuroblastoma (NB). These are solid tumors characterized by extensive hypoxic areas. The hypoxic microenvironment induces transcription of hypoxia-inducible factors (HIFs) which in turn trigger the activation of signaling cascades responsible of cells proliferation and metastasis formation. In particular, HIFs activation is linked to epidermal growth factor receptor (EGFR) overexpression and induction of vascular endothelial growth factor (VEGF) release. Previous studies have demonstrated that PACAP and VIP promote neuroblastoma differentiation and are also implicated in counteract the invasive nature of gliomas. In the present work, we have investigated the molecular mechanisms underlying the anti-invasive effect of PACAP or VIP in GBM and NB cells. Peptides effect have been tested in U87MG glioblastoma cells and in malignant undifferentiated and all-trans retinoic acid (RA) differentiated SH-SY5Y cells, representing the benign form of NB, exposed to deferoxamine (DFX), an hypoxic mimicking agent. Our data have shown that PACAP and VIP counteract GBM cell invasiveness under hypoxia by modulating HIFs and EGFR expression through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways. Furthermore, they also induce NB cell differentiation into benign form by regulating HIFs, VEGF and VEGFRs expression and distribution. Overall, our finding demonstrated the efficacious role played by PACAP and VIP in counteract GBM and NB malignancy.
A NOVEL GENETIC VARIANT OF CCT5 RELATED TO MOTOR NEUROPATHY

Scalia F.1,2, Antonia V.1, Giorgio E.1, Radio FC.3, Brusco A.4, Oliveri M.4, Corsello G.1, Lo Celso F.2,3, Vadala M.1,2, Vitale AM.1,2, Marino Gammazza A.1,2, Barone R.1,2, Rappa F.1,2, Amato D.1,2, Lo Bosco G.1,2, Barone G.1, Conway de Macario E.1, Macario AJL.2,3, Giuffrè M.3, Cappello F.1,2

1Dept. of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; 2Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; 3Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy; 4Dept. of Medical Sciences, University of Torino, Torino, Italy; 5Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy; 6Dept. of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy; 7Dept. of Physics and Chemistry - Emilio Segre, University of Palermo, Palermo, Italy; 8Ionic Liquids Laboratory, Institute of structure of matter, Italian National Research Council (ISM-CNR), Rome, Italy; 9Dept. of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, USA; 10Dept. of Mathematics and Computer Science, University of Palermo, Palermo, Italy; 11Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy

Identification of diseases associated with acquired or genetic defects in members of the chaperoning system (CS) is increasing in frequency as the knowledge of the system expands. The CS is composed of molecular chaperones, co-chaperones, co-factors, receptors, and interactors, and their diseases are the chaperonopathies. Illustrative instances of genetic chaperonopathies are mutations in the chaperonins of Groups I (e.g., Hsp60) and II (e.g., CCT). The diseases MitCHAP60 and SPG13 are examples of the former, while a distal sensory mutilating neuropathy is caused by a mutation (His147Arg) in the CCT5 subunit equatorial domain. Recently we identify a novel homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene causing devastating disease in a young Italian girl. The phenotype associated with this variant is mostly characterized by early-onset, demyelinating neuropathy, severe motor disability and it looks extremely different from that observed in subjects affected by p.(His147Arg) mutation. Here we show the genetic analysis and compare clinical data of our patient with those from patients carrying p.(His147Arg) variant. Furthermore, through in silico 3D-structure analysis and bioinformatics, we demonstrate that the novel p.(Leu224Val) mutation occurring within the intermediate domain of the CCT5 leads to an abnormal conformation of its apical domain, as a result of a “mutation resonance-effect” on the molecular anatomy of the subunit. Finally, in the present study, we also observed histopathological impairment of myofibers and an incorrect organization of sarcromeric proteins in skeletal muscle tissue from affected p.(Leu224Val) patient. This is the first time that the effects of a CCT-complex mutated subunit are evaluated on diseased skeletal muscle tissue. These preliminary data could open a new gateway leading into the field of chaperonopathies to study, for example, the impact of the mutations on the properties and functions of the subunit and its teams (functional oligomers) and networks, and the molecular mechanisms of the tissue and organ abnormalities seen in patients. The molecular processes underlying the mutation are yet to be clarified, but now we show that impaired CCT-complex does not guarantee the function and structure of musculoskeletal tissue. Data from these investigations should be instrumental for developing screening procedures for early diagnosis, even prenatal, for genetic counseling, and for developing specific therapies centered on the chaperonin.

MECHANICAL STIMULI INDUCE PHENOTYPIC CHANGES IN PERIPHERAL NERVES RELATED WITH PAIN RELIEF

Carta G.1,2, Fregnan F.1,2, Muratori L.1,2, Fornasari B.1,2, Geuna S.1,2, Raimondo S.1,2

1Dept. of Clinical and Biological Sciences, University of Turin, Orbassano TO; 2Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy

The selective repeated tension of the Peripheral Nervous System (PNS) also known as neurodynamic treatment (NDT) is successful in pain modulation of patients affected by nerve-related chronic and acute back and neck pain, the main cause of disability worldwide. Even if NDT reduces pain and disability the biological effects involved are still unknown and no standard protocol is available. The study aims to assess the effects of NDT on PNS cells in order to develop a standardized protocol, to define any dose response changes in PNS cells and even any side effects of NDT. We adopted in vitro models of motor and nociceptive neurons (NSC34 and 50B11) and later an ex vivo model of rat Dorsal Root Ganglia (DRG). Protocols of repeated mechanical stimuli were tested starting from those reported in literature and refined by previous trial results. Experiments were performed in triplicates seeding cells on pre-coated silicone membranes and repeated tension protocols were administered using a bioreactor. Morphological, Gene and Protein expression analysis were performed. A standardized protocol of NDT was possible to be defined. NDT protocols are able to induce dose response changes in motor, sensitive neurons and DRGs. No side effects were possible to be detected. In particular NDT is able to promote cell differentiation and to avoid apoptosis. Interestingly, the NDT do significantly affect the expression of PIEZO1 and TACAN, that are genes linked to receptors transducing respectively mechanical non painful stimuli and mechanical painful stimuli. Those results suggest that NDT promotes the regeneration processes in motor and sensory neurons with anti-allodynic effect. Even if cell lines and DRG rodent models looks distant from clinical practice the cell subpopulations and their behavior are similar to human PNS cells. Also, all variables on which the NDT protocol was defined (amplitude of elongation, number of repetition, speed etc.) still be very suitable to be translated in clinical settings.
ENRICHED CHITOSAN CONDUITS FOR PERIPHERAL NERVE REPAIR

El Spory M1,2, García García ÓD1,2, Chato Astrian J1, Tarulli I1, Perroteau I1, Raimondo S1,2, Carriel Araya VS1, Gambarotta G1,2
1Dept. of Clinical and Biological Sciences (DSCB), University of Torino, Orbassano TO, Italy; 2Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano TO, Italy;
3Dept. of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigacion Biosanitaria Ibs. Granada, Spain

Repairing severe peripheral nerve injuries remains a great challenge for surgeons, as the regeneration outcomes are not usually satisfactory. In injuries accompanied by substance loss, nerve autografts are used to fill the nerve gap and to rejoin the two transected nerve stumps. Tubulization technique is an alternative that has been developed to repair nerves and to overcome the limitations accompanied by the use of autografts. It is highly efficient in repairing small gaps (up to 3 cm), while to improve the conduit efficiency in repairing long gaps intraluminal enrichment might be a good strategy. Extracellular matrix (ECM) fillers, stem cells, growth factor releasing particles or internal topographical cues are different strategies to bio-mimic the native neural tissue. In this study we combined two ECM components that are known to have a role during peripheral nerve regeneration and are endogenously released in the injured environment: fibrin and collagen. Fibrin cables are secreted by fibroblasts and help in guiding cellular migration; collagen is required for normal extracellular matrix assembly and plays an important role in the regulation of Schwann cell function. Hollow chitosan conduits were enriched with a mix of fibrin and collagen hydrogel with or without the addition of Adipose Derived Mesenchymal Stem Cells (ADMSC) and these combinations were tested in regenerating a sciatic long gap injury (15 mm). Macroscopic analysis showed that the ulcer diameter was statistically less in ADMSC fibrin-collagen enriched conduits. Muscle atrophy did not show significant differences between tested groups. Molecular analysis during the first month following injury and repair showed that soluble Neuregulin1 (a growth factor playing an important role in nerve repair) was highly upregulated in enriched conduits both at RNA and protein level. Morphometric analysis will be also performed to evaluate the final regeneration outcome following 15 weeks of repair. Based on the obtained preliminary results we can speculate that the addition of ADMSC, together with fibrin-collagen hydrogel, to hollow conduits, could enhance the regeneration outcome.

DEVELOPMENT OF NOVEL PERIPHERAL NERVE WRAPS: AN IN VIVO STUDY

Stocco E1,2, Barbon S1,2, Porzianato A1,2, De Rose E1, Tiengo C3, Macchi V1,2, De Caro R1,2
1Section of Human Anatomy, Dept. Neurosciences, University of Padova, Padova; 2LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova; 3Clinic of Plastic Surgery, Dept. Neurosciences, University of Padova, Padova, Italy

The aim of the study was to assess and compare the efficacy of two novel biodegradable wraps, in a rat model of peripheral nerve injury without substance loss. In particular, the wraps were made of synthetic oxidized polyvinyl alcohol (OxPVA) and natural leukocyte-fibrin-platelet membrane (LFPm), respectively. During surgery, after sciatic nerve sharp transection, neurorrhaphy was performed. Sprague-Dawley rats (n=30) were randomly implanted with a) NeuraWrapTM (control group); b) OxPVA; c) LFPm wraps. Thus, 12 weeks later, after functional recovery tests, the animals were euthanized, and samples removal occurred. Explanted nerves underwent to morphological/morphometric studies including histological evaluations (hematoxylin and eosin staining - H&E; Toluidine-Blue staining) and immunohistochemical analyses (anti-CD3, -F4/80, -S100 -β-tubulin staining). Thus, ultrastructural investigations were also performed by Transmission Electron Microscopy (TEM) and collagen distribution was observed by Second Harmonic Generation (SHG) microscopy. According to the study results, all the implanted wraps allowed for nerve function recovery; at dissection, no dislocation of the wraps was observed, and no scar-tissue/neurromas were recognizable at the surgery site. As regards wraps biodegradation, only OxPVA and NeuraWrapTM residues were still identifiable, suggesting a higher re-absorption rate for the LFPm wraps. Histological and immunohistochemical analyses (CD3 and F4/80) both proved the absence of significant inflammatory infiltrate in all experimental groups, suggesting the biocompatibility of the implanted wraps. Then, the specific nervous origin of the repaired tissue was also verified by both immunohistochemistry (S-100 and β-tubulin) and TEM analysis. In the fascicular area, no significant collagen infiltration was observed by SHG microscopy in OxPVA samples compared to NeuraWrapTM and LFPm wraps. According to the morphometric study, OxPVA and LFPm wraps were effective in promoting nerve regeneration especially in the distal portion. Bioengineered OxPVA and LFPm wraps promoted lesion recovery and may be considered an interesting alternative to the commercial NeuraWrapTM.
BENZ[α]PYRENE AFFECTS DEVELOPMENT AND FUNCTION OF HUMAN GNRH NEUROBLASTS

Guarnieri G1, Sarchielli E1, Becatti M2, Marchiani S3, Baldi E3, Morelli A3

1Dept. of Experimental and Clinical Medicine, Section of Human Anatomy and Histology, University of Florence; 2Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence; 3Dept. of Experimental and Clinical Medicine, Center of Excellence DeNothe, University of Florence, Florence, Italy

The increasing environmental pollution represents a major concern not only for the global ecosystem, but also for human health. Endocrine disrupting chemicals (EDCs), such as benz[a]pyrene (BaP), are widespread pollutants that can interfere with the endocrine system, altering reproductive function and embryo development. However, little is known about BaP effects on human reproductive axis at central level. The central regulatory network of the reproductive system is mediated by gonadotropin-releasing hormone (GnRH) neurons, which originate in the olfactory placode and, during fetal development, migrate into the hypothalamus. We investigated the direct effects of BaP on development of GnRH-secreting neurons taking advantage of a primary culture isolated from the human fetal hypothalamus (hfHypo). hfHypo cells express the enzymes cytochrome P450 (CYP1A1 and 1B1), required for metabolic activation of BaP and that expression was strongly induced by BaP exposure (0.2 and 10 µM for 24 h). Moreover, treating hfHypo with BaP (10 µM, 24 h) increased reactive oxygen species (ROS) production and influenced the total antioxidant capacity of the cells. From a functional point of view, BaP exposure (10 µM, 24 h) significantly reduced both mRNA and protein expression of GnRH and decreased the mRNA level of the receptor for kisspeptin (KISS1R), the main physiological regulator of GnRH neuron function. In addition, since the migratory process is a crucial event for the correct maturation and functionality of GnRH neurons, we investigated the effect of BaP on pre-migratory GnRH neuroblasts isolated from the human fetal olfactory epithelium (FNC-B4). Preliminary results, using a transwell assay, indicated that BaP pre-incubation (10 µM for 24 h) significantly reduced FNC-B4 migratory properties. In conclusion, our findings demonstrate that BaP may directly affect GnRH neuron maturation and function by altering migration process and interfering with GnRH and KISS1R expression, suggesting a possible mechanism underlying EDCs-related alterations of reproductive function.

EFFECTS OF CHRONIC EXPOSURE TO BISPHENOL-A IN PREGNANT FEMALE MICE

Bonaldo B1,2, Marraudino M1,2, Casile A1, Bettarelli M1, Gotti S1,2, Panzica GC1,2

1Neuroscience Institute Cavalieri Ottolenghi (NICO) Orbassano TO, University of Turin, Turin; 2Dept. of Neuroscience Rita Levi-Montalcini, Turin, Italy

Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is one of the best known and most studied EDCs (Endocrine Disrupting Chemicals, i.e. an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action). Exposure to BPA is especially dangerous if it occurs during specific “critical periods” of life, such as intrauterine, perinatal, juvenile or puberty periods, when organisms are more sensitive to hormonal changes. This exposure can originate, in adulthood, both physiological and behavioural alterations. In particular, we focused on the effects of exposure to BPA during pregnancy, which represents a particularly sensitive period not only for the fetus but also for the mother. In this study we treated C57BL/6 dams orally with a dose of 4 µg/kg body weight/day (i.e. EFSA Tolerable Daily Intake dose) of BPA dissolved in corn oil (N=11) or with vehicle (N=8), starting with mating and continuing for 20 weeks. We monitored the dams, evaluating their body weight (daily) and food intake (once a week). During the last two weeks of treatment we followed up the estrous cycle and we performed the Three-Chamber Test to assess sociability. We did not notice differences in body weight, food intake, number of pups and male-to-female ratio in the litters, but we found that BPA-treated dams tend to have higher pup mortality and to develop an aggressive behavior towards males during mating. In addition, BPA-treated dams showed an altered estrous cycle, spending more time in estrus compared to the controls. The Three-Chamber Test revealed that the male-preference of the control mice, measured as time spent within the chamber of the male non-tester mouse, was lost in BPA-treated females. Therefore, we decided to analyze vasopressin and oxytocin systems, measuring both fractional area and number of cells, in paraventricular, supraoptic and supracliasmatic nuclei of these animals. Although we did not find any alteration in the oxytocin system, we did observe some alterations in the vasopressin system, which could be partially linked to the behavioral alterations. These results suggest that exposure to BPA may pose a risk even in adulthood (given the long-term exposure period, the persistence of these compounds in the environment and the ability of bisphenols to accumulate in certain compartments of the body), particularly when it occurs during delicate periods such as pregnancy.
UPDATE ON ZINC PROTECTION AGAINST Cd-INDUCED BBB IMPAIRMENT

Carrino D1, Branca JJV1, Di Cesare Mannelli L2, Paternostro F1, Bonechi S1, Morucci G1, Gulisano M1 and Pacini A1

1Dept. of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, Firenze; 2Dept. of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, Firenze; 3Dept. of Translational Research and New Technologies in Medicine and Surgery - Human Anatomy, University of Pisa, Pisa, Italy

Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems. Due to its highly soluble nature compared to other metals, Cd is easily absorbed by plants giving rise to bioaccumulation phenomena. So, the diet is the primary source of Cd exposure in humans. Other sources include smoking, occupational exposure and house dust. Once inside the bloodstream, Cd is able to impair the blood-brain barrier (BBB), a specialized system that shields the brain from toxic substances in the blood. This impairment allows a greater amount of toxicant to enter the central nervous system leading to neurodegeneration. In fact, chronic exposure to Cd has been linked to numerous neurodegenerative disorders in adulthood including Alzheimer’s and Parkinson’s diseases. Although studies in rodents have established a Cd-dependent BBB dysfunction, how Cd may alter the cell-cell junctions in the endothelium remains elusive. In our previous studies, we investigated the signaling pathway of Cd-induced tight junctions disassembly in a rat brain endothelial cell line (RBE4), as an in vitro model for the study of the BBB. This phenomenon was coincident with a significant ROS production, upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum stress, caspase-3 activation and BAX overexpression leading to apoptotic cell death pathways. Surprisingly, the micronutrient Zinc (Zn), one of the most important microelements necessary for normal body functioning, was able to mitigate Cd harmful effects. Moreover, morphological analysis following Zn co-treatment showed the role of Zn in preventing ZO-1 dislocation and altered cytoskeleton rearrangements induced by Cd. These results highlight the protective role of Zn against Cd-induced alteration in the BBB, suggesting Zn supplementation as an effective strategy to prevent cell oxidative stress.

EXPOSURE TO PARTICULATE MATTER HAMPERS REPAIR IN A MOUSE MODEL OF DEMYELINATION

Parolisi R1,2, Montarolo F2,3,4, Pini A5, Rovelli S6, Cattaneo A6, Bertolotto A1,2, Buffo A1,2, Bollati V7, Boda E1,2

1Dept. of Neuroscience Rita Levi-Montalcini, University of Turin; 2Neuroscience Institute Cavaleri Ottolenghi (NICO), University of Turin, Orbassano TO; 3Neurobiology Unit, Neurology-CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Orbassano TO; 4Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Turin; 5Dept. of Clinical and Experimental Medicine, University of Florence, Florence; 6Dept. of Science and High Technology, University of Insubria, Como; 7Dept. of Clinical Sciences and Community Health, University of Milan, Milan, Italy

Epidemiological studies show a strong association between exposure to air pollution – and particularly to particulate matter (PM) – increased prevalence of Multiple Sclerosis (MS) and higher rates of hospital admissions for MS and MS relapses. Beyond having immunomodulatory effects and sustaining a systemic oxidative-inflammatory response, PM may participate in MS pathogenesis by targeting also Central Nervous System (CNS)-specific processes, such as myelin repair. Here we show that, in a mouse model of lyssolecithin-induced demyelination of the subcortical white matter, post-injury exposure to fine PM hampers remyelination, disturbs oligodendroglia differentiation dynamics and promotes astroglia and microglia reactivity. These findings support the view that exposure to fine PM can contribute to demyelinating pathologies by targeting the endogenous regenerative capability of the CNS tissue.
SESSIO N V - BRAIN AND METABOLISM

ION CHANNEL EXPRESSION IN THE BRAIN AREAS OF HIGH-FAT DIET FED RATS

Roy P1, Martinelli I2-3, Moruzzi M4, Micioni Di Bonaventura MV5, Cifani C6, Amantini C7, Tayebati SK8, Amenta F9, Tomassoni D1

1School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy; 2School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy; 3Institute of Metabolic and Cardiovascular Diseases (I2MCD), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France

Obesity is associated with the development of cerebrovascular diseases promoting cognitive decline. High Body Mass Index has been suggested as a risk factor for Alzheimer’s disease and vascular dementia and has been associated with poorer cognitive performance in population-based studies. Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called TRP channelopathies) that affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the effects of a high-fat diet on ion channel expression in the brain of diet-induced obesity (DIO) rats. DIO rats were studied after 17 weeks under a hypercaloric diet. Moreover, groups of DIO rats were supplemented with tart cherries seeds powder (DS) or seeds powder plus tart cherries juice (DES) to evaluate the possible protective effects. DIO rats were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of high-calorie diet exposure, we examined food consumption, fat mass content and fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and morphological analysis were performed in the frontal cortex and hippocampus. After 17 weeks of fat diet, rats increased significantly their body weight in comparison to the CHOW rats. No differences in body weight were observed in DS and DES rats compared to age-matched DIO rats. In DIO rats TRPC1 and TRPC6 were up-regulated in the hippocampus, while they were down regulated in the frontal cortex. In the case of TRPM2 expression instead, was increased both in the hippocampus and in the frontal cortex. All these data are confirmed by immunohistochemical and Western blot analysis. Supplemented DIO rats showing a different modulation on TRPC1, TRPC6, TRPM2, and TRPV1 ion channel expression in the hippocampus and the frontal cortex, possibly related to the positive effects of anthocyanins on reactive gliosis. The identification of neurodegenerative changes in DIO rats involving the ion channels expression may represent the first insight to better characterize the neuronal changes occurring in obesity. Further studies are needed to clarify the benefits of tart cherry supplementation on the prevention of cerebrovascular alterations.

MUSIC EFFECT ON WEIGHT, GHRELIN EXPRESSION IN RAT HYPOTHALAMIC NEURONS

Russo C1, Patanè M1, Stanzani S1, Russo A1, Pellitteri R2

1Dept. Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania; 2Inst for Biomedical Research and Innovation, National Research Council, Catania, Italy.

Recent studies highlighted that music stimuli play an important role in brain physiology, in some areas related to emotions, food intake and body weight, such as the amygdala, the hippocampus and the hypothalamus. Furthermore, music seems to influence the regulation of the hypothalamic-pituitary-adrenal axis, in the sympathetic nervous system and in the immune system, thus affecting metabolism and energy balance. This leads us to believe that music can have positive effects on the physiological mechanisms directed to metabolic recovery. There are different frequencies to which music can be tuned, today the most used is at 440 Hz, while in the past the 432 Hz frequency was more utilized showing particular effects on brain. Ghrelin (Ghre), a gut-brain peptide hormone, regulates food intake in the hypothalamus; in the last years, it has aroused particular interest for its antioxidant, anti-inflammatory and anti-apoptotic properties. In our previous investigation, we reported that musical stimuli at 432 Hz modified the Ghre expression in the rat, increasing beneficial effects on metabolism. In this study, we used this frequency and we focused our attention on body weight, Ghre expression and neuron morphology in hypothalamic cultures. To investigate the role of music, we utilized newborn pups from pregnant rats; they were divided in two groups: Gr1 without music stimuli, Gr2 with music stimuli at 432 Hz during both the perinatal period and the postnatal period, same for three days (P3) and others for six days (P6). Our results showed that music increased the body weight of pups; in addition, an enhanced Ghre expression in hypothalamic neurons and their axonal elongation were highlighted by immunocytochemical techniques. The expression of Ghre in the β3-Tubulin positive neurons increased significantly in both Gr1 and Gr2 from P3 to P6. In particular, the increase of the expression of Ghre in the neurons was statistically significant at P3 between Gr1 and Gr2; this increase became highly significant at P6. In addition, the Ghre/β3-Tubulin positive neurons both of Gr1 and Gr2 showed a significant physiological elongation of the processes from P3 to P6. These results suggest that the musical frequency at 432 Hz could stimulate the orexigenic Ghre effects influencing the increase in body weight and affecting the number of hypothalamic neurons expressing Ghre.
SESSION VI - NOVEL APPROACHES FOR NEURO-ANATOMICAL/MORPHOLOGICAL STUDIES IN THE HUMAN NERVOUS SYSTEM

BUILDING A 7T – RADIOLOGICAL-ANATOMO-TOPOGRAPHICAL ATLAS OF THE HUMAN BRAIN

Emmi A1, Donatelli G2, Porzionato A1; Costagli M1, Macchi V1, Cecchi P1, Cosottini M1, De Caro R2

1Institute of Human Anatomy, Dept. of Neuroscience, University of Padova; 2Imago 7 Research Foundation, Pisa, Italy

The anatomical organization of the central nervous system represents one of the most complex fields of anatomical sciences. The purpose of this project is to build an Atlas of the ex vivo human brain employing ultra-high field 7T MRI with anatomomicroscopical validation and 3D reconstruction of both MRI scans and histological sections. One human brain deriving from the Body Donation Program of the Institute of Human Anatomy of the University of Padua was sampled after a 48 h post-mortem delay and fixed in 4% paraformaldehyde for 30 days. The specimen was then placed in an airtight cylinder filled with perfluoropolyether, a fluid which is hypointense in all the MRI sequences, paying attention to remove as much air as possible from the ventricles and the depth of the sulci. The specimen first underwent ultra-high field 7T MRI performed with a Discovery MR 950 scanner (GE Healthcare) equipped with a 2ch-Tx/32chRx head coil for imaging the whole brain. The specimen was then anatomically sectioned in order to isolate the brainstem, which subsequently underwent MRI employing a custom-built Tx/Rx birdcage coil for the acquisition of high-resolution sequences of the brainstem. MR images were used to design and create two cutting boxes, one for each specimen. These are boxes containing a housing for the specimen designed as a negative plaster cast and equidistant fissures which act as guides for the anatomical section of the sample. The specimens where then sectioned and stained with Hematoxylin and Eosin, Klüver-Barrera and Weigert-Pal and were used as the reference for the MR images analysis. 7T MRI of the brainstem revealed structures generally evaluated through light microscopy, such as the accessory medial and dorsal olivary nuclei, the oculomotor nucleus, the solitary tract, the medial and dorsal longitudinal fasciculus, the nucleus ambiguus and the mesencephalic tract of the trigeminal. Whole brain imaging revealed several structures that are difficult to visualise through conventional MRI at high magnetic field, such as the subthalamic nucleus, the dorsal anterior nucleus of the thalamus, the continuity between the substantia incerta and the extended amygdala. MR images accurately represented the morphological organization of brainstem and subcortical structures, as revealed by comparison with anatomomicroscopical sections.

SEGREGATED AND INTEGRATED FUNCTIONAL TERRITORIES OF THE HUMAN GLOBUS PALLIDUS

Bertino S, Basile GA, Anastasi G, Milardi D, Cacciola A

Brain Mapping Lab, Dept. of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy

The most accepted model on basal ganglia functional anatomy, mainly derived from multimodal evidences collected from non-human primates, suggests that connections from functionally homologous regions of the cerebral cortex, striatum and subthalamic nucleus are likely to converge on overlapping, yet identifiable regions of the globus pallidus (GP). Herein, in order to provide a comprehensive, unified framework of basal ganglia connectivity and functional topography, we test the hypothesis that the striatopallidal, subthalamopallidal and pallidothalamic pathways are spatially coherent and topographically organized within the GP by using tractography-derived connectivity based parcelation (CBP) on a 3T MRI dataset of 100 healthy subjects. The two-stage hypothesis-driven CBP approach proposed herein revealed that the striatopallidal, subthalamopallidal and subthalamopallidal pathways are topographically organized in anterior limbic, intermediate associative and posterior sensorimotor territories within the internal (GPI) and external GP (GPe). Our results suggest that the general topographical organization of connectivity parcels is highly consistent across the GPI and GPe, regardless the bundle of interest, reinforcing the idea that different pathways, running parallel and in series to one another, may share the same spatial organization pattern. Indeed, we found high similarity among functionally homologous connectivity maps derived from the striatopallidal, subthalamopallidal and pallidothalamic tracts, as indicated by good-to-high Dice coefficient values. In order to investigate the possible clinical or pathophysiological relevance of our results, we evaluated the spatial relationship between the sensorimotor GP connectivity maps obtained in the present study and optimal stimulation sites as previously identified in dystonic patients, showing that the coordinates of such optimal stimulation sites are located along the lateral border of striatopallidal and pallidothalamic sensorimotor maps, whilst covered a more central position within subthalamopallidal maps. Taken together, our findings suggest that functionally homologues afferent and efferent connections may share similar spatial localization within the GP and that the pallidal connectivity maps obtained in the present study may be employed during pre-operative targeting in order to ameliorate clinical outcomes as well as to improve our current knowledge of side effects during post-operative evaluation.

TRACTOGRAPHY-BASED VIM IDENTIFICATION: A METHODODOLOGICAL PERSPECTIVE

Bertino S, Basile GA, Anastasi G, Milardi D, Cacciola A

Brain Mapping Lab, Dept. of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy

The ventral intermediate nucleus (Vim) of thalamus receives its afferent connections from contralateral dentate nucleus and mainly projects to primary motor area, thus representing the prototypical target for tremor suppression in functional neurosurgery settings. For this reason, structural connectivity-based
parcellation (CBP) of thalamus is emerging as a promising resource for functional neurosurgery, allowing for individualized Vim targeting. However, results of CBP rely on methodological variables which have been poorly investigated in existing literature. Herein, we present a novel thalamus parcellation protocol, by testing it on high quality data of 210 healthy subjects from the Human Connectome Project repository. Structural CBP of thalamus has been carried out employing two different signal modelling techniques: diffusion tensor model (DTI) and constrained spherical deconvolution (CSD). Each parcellation pipeline has been performed applying either hard-segmentation or a 25% threshold on connectivity maps. Summarizing, four different pipelines have been implemented for each subject. Reproducibility of each pipeline was then assessed calculating inter-subject similarity measures. Finally, the spatial relations between connectivity maps, Vim histological maps and an optimal stimulation point for essential tremor have been characterized. CSD-based pipelines resulted to be more reproducible than DTI-based ones; moreover, higher reproducibility was observed when a threshold-based approach was applied as voxel classification criterion. Among motor related connectivity maps, the precentral gyrus map resulted to be the most reproducible, whilst dentate connectivity maps exhibited the lowest reproducibility. Dentate and precentral connectivity maps exhibited higher overlap with histological Vim maps. In addition, the optimal stimulation point for essential tremor was located into the overlap area between connectivity maps of dentate nucleus and precentral gyrus. Taken together, our results suggest that a pipeline combining CSD signal modeling with a threshold-based approach is able to highlight the thalamic voxels connected both to precentral gyrus and to contralateral dentate nucleus with high reproducibility, thus potentially representing a powerful tool for identifying the ideal target to stimulate/ablate in prospective functional neurosurgery studies.

IN VIVO IDENTIFICATION OF THALAMIC NUCLEI USING TRACK-DENSITY IMAGING

Basile GA, Bertino S, Anastasi G, Milardi D, Cacciola A

Brain Mapping Lab, Dept. of Biomedical, Dental sciences and Morphological and Functional Images, University of Messina, Italy

The thalamus is a core structure of the human brain and its nuclei present distinct cyto-, myelo- and recepto-architectonical features; each of these nuclei has important implications in various key aspects of brain physiology and many of them show selective alterations in a wide range of brain disorders. In addition, both surgical stimulation and ablation of specific thalamic nuclei have been proven to be useful for treating different neuropsychiatric diseases. As thalamic nuclei show very poor contrast on conventional M R I scans, the development of novel techniques for the in vivo, non-invasive visualization and identification of thalamic structures has represented a major challenge for human neuroimaging research in the last decades. While conventional methods based on stereotactic and histological atlases usually rely on just a few anatomical specimens and may then underestimate inter-individual variability, methods based on clustering of structural or functional connectivity are inherently limited by poor spatial resolution and often fail in the identification of smaller nuclei. Herein, we present a protocol for histologically-guided delineation of thalamic nuclei based on track-density imaging (TDI), which is an advanced imaging technique that exploits high angular resolution diffusion tractography to obtain super-resolved white matter maps with high anatomical detail. We tested this protocol on i) six healthy individual 3T MRI scans from the Human Connectome Project database, and on ii) a group population template reconstructed by averaging 100 healthy subject’s MRI scans from the same repository. We demonstrate that this protocol can identify up to 13 distinct thalamic nuclei with very high reliability (intraclass correlation coefficient: 0.995, 95% confidence interval: 0.992-0.998; total accumulated overlap: 0.43) and high similarity to the most recent histological thalamic atlas. We show that the obtained thalamic maps can be successfully used to study thalamic connectivity profiles in vivo using both structural and functional neuroimaging. We suggest that such protocol, by bringing together the advantages of histological and connectivity-based approaches, may have potential implications both for basic and translational research, as well as for pre-surgical planning purposes.

TRANSLATIONAL STUDY OF THE HUMAN CEREBELLAR DOPAMINERGIC SYSTEM, ITS INTERCONNECTIONS AND ROLE IN NEUROLOGIC AND PSYCHIATRIC DISORDERS

Flace P1, Livrea P2, Galletta D1, Gulisano M1, Gennarini G2

1Medical School, University of Bari ‘Aldo Moro’, Bari; 2University of Bari ‘Aldo Moro’, Bari; 3Unit of Psychiatry and Psychology, Federico II University Hospital, Naples; 4Dept. of Experimental and Clinical Medicine, University of Florence, Florence; 5Dept. of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, Bari, Italy

The cerebellum is not considered a dopaminergic area, though a cerebellar role in Parkinson’s disease (PD) and schizophrenia (SCZ) were suggested. In rodents cerebellum the presence of extrinsic dopaminergic fibres and of few Purkinje neurons in the cerebellar cortex were evidenced, instead in human brain data of cerebellar dopaminergic neuronal system and of interconnections between the cerebellum and the midbrain dopaminergic nuclei A9 and A10 are both lacking. The goal of this study is to make in the human cerebellum an analysis by means of an immunohistochemical and Diffusion Magnetic Resonance Tractography (DMRT) approach on the presence of an intrinsic cerebellar dopaminergic system and interconnections among the dentate nucleus to A9 and A10. Fragments of autopic human cerebellum were fixed in an aldehyde-picric acid solution, embedded in paraffin, cut into 5 μm sections and subjected to light microscopic immunohistochemistry with rabbit polycional antibodies for dopamine transporter (DAT) or dopamine receptor type 2 (DRD2). A 3T Achieva Phillips scanner was used; a SENSE 8 channels head coil, acquiring T1 weighted 3D TFE, DTI sequences: data were analyzed using the contrastained spherical deconvolution technique (CSD). DAT and DRD2 positivity were detected in the cerebellar cortex in Purkinje and synapticotrophic neurons. In the dentate nucleus DAT and DRD2 positivity was observed in several neuron types. Moreover, we demonstrated with CSD, interconnections of the dentate nucleus to A9 and A10. This study demonstrates the existence of a cerebellar intrinsic neuronal dopaminergic system and the presence of direct dentate nucleus interconnections to the A9 and A10 nuclei. Finally, we suggest that the cerebellum may be involved in dopamine-related brain disorders and may be a critical element for transcranial stimulations, a new non-pharmacologic therapeutic approach for PD and SCZ.
A NEUROSCIENCE MULTIDISCIPLINARY ASSESSMENT OF CORPUS CALLOSUM AGENESIA

Galletta D1, de Bartolomeis A2, Zappettella Del Sesto FS3, Livrea P4, Flace P5

1Unit of Psychiatry and Psychology, Federico II University Hospital, Naples; 2Laboratory of Molecular and Translational Psychiatry, Dept. of Neuroscience, School of Medicine, University “Federico II”, Naples; 3Unit of Human Pathology ‘Sea Hospital’ASL-NA1 Centre, Naples; 4University of Bari ‘Aldo Moro’, Bari; 5Medical School, University of Bari ‘Aldo Moro’, Bari, Italy

The corpus callosum (CC) is the main brain interhemispheric commissural structure in placental mammals. In human CC reaches its maximum complexity and size relative to whole brain volume. The CC fibers originated mainly by neocortical neurons of the layers III, V, VI, and are mainly composed by myelinated fibres and by a minor number of unmyelinated fibres, which present a heterogeneous neurochemical composition. Cytologically consists of oligodendrocytes, astrocytes, and few neurons. Though the CC fibers are topographically subdivided in 7 regions the functional distribution of the CC fibers is still little known. Recently, in the CC regions a different expression profile of regulating proteins involved in oxidative stress and in Ca-regulation signalling were demonstrated. The agenesia of the corpus callosum (AgCC) is a developmental disorder characterized by a complete or partial absence of CC fibers, often the AgCC are neglected or undiagnosed. Studies evidenced the coexistence between the AgCC and other brain abnormalities, instead, the influences of AgCC on the brain abnormalities and on the neurologic and psychiatric symptoms are scanty. Therefore, the aim of the study was to investigate in a neglected AgCC clinical case by means of morphological, clinical and neuropsychological approach the influence of the AgCC on other brain abnormalities, clinical symptoms, neuropsychological value. The evidence the presence of other brain abnormalities, neurologic and psychiatric symptoms, neuropsychological impairment closely related to the AgCC. This multidisciplinary assessment can play a relevant role to evidence the presence of undiagnosed AgCC or CC abnormalities related to neurologic and psychiatric diseases such as multiple sclerosis, cognitive impairments; prognosis of stroke sequelae, Marchiafava-Bignami disease, Korsakoff’s syndrome, autism spectrum disorders.

EVIDENCE FOR A2A-D2 RECEPTOR-RECEPTOR INTERACTIONS IN THE CAROTID BODY

Porzionato A1, Stocco E2, Sfriso MM3, Barbon S4, Contran M5, Borli G6, Guidolin D7, Tortorella C8, Macchi V9, De Caro R1

1Section of Human Anatomy, Dept. Neurosciences, University of Padova, Padova; 2Dept. of Physics and Astronomy “G. Galilei,” University of Padova, Padova, Italy

The carotid body (CB) is an arterial chemoreceptor located at the carotid bifurcation and typically constituted by ‘neuron like’ chemo-sensitive type I cells and ‘glial-like’ supportive type II cells. There is great consensus in recognizing the CB as a multipurpose sensor-activity organ, exerting its role through the activation of afferent sensory fibers. In fact, to counteract environmental variations like hypoxia, hyperoxia, acidosis, type I cells produce many different neurotransmitters/neuromodulators to restore balance; among them, adenosine and dopamine are included, and they can interact with adenosine receptor A2A and dopamine receptor D2, respectively. From a functional perspective, the reciprocal influences of the two receptor monomers in a A2AD2 receptor complex would be particularly intriguing; this event has been proved in many different tissues but never in the CB. The aim of this work was to demonstrate close proximity (i.e. a distance lower than 10 nm) between the receptor molecules A2A and D2 as colocalization is a necessary condition to have direct receptor-receptor interactions. In turn, this will allow supporting the hypothesis of heterodimers formation. Native CB tissue were obtained from Sprague Dawley rats (n=5) and human donors (n=5) from the Body Donation Program of Padua University. The fixed tissues were paraffin embedded and processed according to routine protocols. After hematoxylin and eosin (H&E) staining, immunohistochemistry and in situ proximity ligation assay (PLA) were both performed to verify the presence and the localization of A2A and D2 receptors. The H&E staining showed the characteristic CB morphology for all the investigated samples and immunohistochemistry revealed positive A2A and D2 elements for all specimens. After PLA assay and confocal evaluation, red clusters surrounding DAPI-stained nuclei were detected suggesting the possible existence of A2A/D2 receptors heterodimers. These data give new insights about both CB basic organization and its ability to possibly undergo plastic changes according to environmental stimuli.

CHARACTERIZATION AND VISUALIZATION OF THE HUMAN NEURONS (POST-MORTEM) COMBINING THE GOLGI’S METHOD AND IMMUNOFLOUORESCENCE

Spiga S, Mulas G, Porceddu R, Picci L, Sabatini A

Dept. of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy

The Golgi’s method is still one of the most used methods to study the central nervous system at the microscopic level. In fact, its ability to “stain” the neurons in a very detailed manner makes it a low-cost instrument even within the reach of the smallest research laboratories. However, the complete absence of biochemical information that accompanies this method, greatly limit its use, nevertheless this information is provided by immunocytochemical procedures. Previously these procedures were used as an alternative to Golgi’s method, forcing the investigator to renounce the morphological detail. Some time ago we successfully patented a method that combines the two procedures obtaining both the morphological detail and the biochemical information of the sample, but this procedure can only be applied to experimental animals due to recommended fixation procedures in rat. With this project we want to develop a new method (Golgi’s staining + immunofluorescence) that is applicable to post-mortem human brain specimens, which are often kept in formalin, even for a long time, waiting for the possibility of being used. Our aim is providing scientific community with a tool for the neuro-anatomical study of a large amount of neurodegenerative diseases directly on humans, in order to give more precise indications with respect to animal experimentation.
MODELING ENTERIC NEUROPATHY: THE RAD21 KNOCK-IN MOUSE

Lattanzio G1, Bianco F2, Mazzoni M3, Bonora E4, Calzà L4, Giardino L5, Lorenzini L5, Sternini C6, De Giorgio R7, Clavenzani P8

1Dept. of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; 2Dept. of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; 3IRET Foundation, Ozzano Emilia; 4UCLA/DDRC, Division of Digestive Diseases, Dept.s Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 5Dept. of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

RAD21 is a double-strand-break repair protein and a critical component of the cohesin complex with key roles in several cellular functions including transcriptional regulation. A novel RAD21 missense mutation has been shown to cause severe gut dysmotility, specifically chronic intestinal pseudo-obstruction (CIPO), in a consanguineous family. RAD21 immunoreactivity (IR) was detected in a subset of enteric neurons of the mouse enteric nervous system. In order to investigate how the Rad21 mutation might contribute to gut sensory-motor dysfunction, this study was designed to provide a quantitative and qualitative characterization of myenteric neurons in the colon of wild type (WT) and genetically re-constructed Rad21 conditional knock-in (Rad21KI) mice carrying the novel Ala26Thr mutation. Immunohistochemical analysis was performed in whole mount myenteric plexus preparations, using a pan-neuronal marker HuC/D, choline acetyltransferase (ChAT, a cholinergic marker for excitatory motor neurons) and neuronal nitric oxide synthase (nNOS, a nitrinergic marker for inhibitory motor neurons). Compared to WT, there was about 30% reduction of HuC/D myenteric neurons/field in Rad21KI mice, reminiscent of the CIPO phenotype observed in patients. Subsets of HuC/D-IR myenteric neurons of WT mouse colon displayed either ChAT-IR (43.7±3.4) or nNOS-IR (30.8±5.4). In Rad21KI mice HuC/D/ChAT-IR neurons/field were 45.1±4.27, while HuC/D/nNOS-IR were 14.1±1.40 neurons/field. These preliminary findings of a reduction of the overall myenteric neurons with a selective reduction of inhibitory motor neurons in Rad21KI mice, suggest an involvement of this gene alteration in gut motility dysfunction. Further studies will be required to validate Rad21KI as a model to better understand enteric neuropathy in CIPO patients.

SESSION VII - ENTERIC NERVOUS SYSTEM AND GUT-BRAIN AXIS

MICROBIOTA AND COGNITIVE DECLINE IN AGING

D’Amato A1, Di Cesare Mannelli L2, Lucarini E3, Branca JJV4, Ghezzi D1, Bertelli E5, Pacini A6, Altera A5, Gulisano M5, Nicoletti C7

1Dept. of Pharmaceutical Sciences, University of Milan; 2NEUROFARBA Dept., Univ. of Florence; 3Dept. of Experimental and Clinical Medicine, University of Florence; 4Dept. of Developmental and Molecular Medicine, University of Siena, Italy

The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems, however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients affected the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production (Lachnospiraceae, Faecalibaculum, and Ruminococcaceae) and disorders of the CNS (Prevotellaceae and Ruminococcaceae) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. These results demonstrated that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly.
SESSION VIII - BRAIN TUMORS AND CHEMOTHERAPY-INDUCED NEUROTOXICITY

MICROENVIRONMENT IN A SYNGENEIC MODEL OF Glioblastoma

Virtuso A1,2, De Luca C2, Visco I1, Giovannoni R1, Papa M3, Lavitrano M1

1Molecular Medicine Lab, School of Medicine and Surgery, University of Milano-Bicocca, Monza; 2Neuronal Networks Morphology Lab, Dept. of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”; 3Dept. of Oncology, Univ. of Pisa, Pisa, Italy

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system components. This interplay induces metabolic, (epi)-genetic, and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl6J mice. Animals were sacrificed at 7, 14, and 21 days (7D,14D,21D) from the inoculation of the cells. A group of animals was subject to valproic acid (VPA) treatment and sacrificed after 21 days from the tumor cells inoculation. The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and RNA microarray technology. Our results showed the dynamics of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. GBM growth was paralleled by a decrease of the innate immune system response while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C. The late phase of the disease correlated with molecular modifications of the non-tumor cells and impairment in the antigen-presenting functions, that may be reversed by valproic acid treatment. The present study emphasizes the role of functional changes in the microenvironment during the GBM progression and the chance of modulation, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.

Mn AND Mg PROTECT AGAINST THE OXALIPLATIN-DEPENDENT NVU IMPAIRMENT

Branca JJV1, Carrino D1, Paternostro F1, Gulisano M3, Becatti M2, Di Cesare Mannelli L3, Pacini A1

1Dept. of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence; 2Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence; 3Dept. of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy

Oxaliplatin is a well-known chemotherapeutic drug largely used for metastatic colorectal cancer. Even though oxaliplatin has showed beneficial effects in tumour reduction, it is able to induce neuropathic pain, thus leading for dose reduction and therapy discontinuation. Recently, it has been demonstrated the oxaliplatin-dependent alteration in a blood-brain barrier (BBB) in vitro model that may, at least in part, explain the mechanism by which oxaliplatin treatment triggers neuropathic pain. Also, glial cells, an integral part of the so-called neurovascular unit (NVU), have a pivotal role in eliciting neuropathy. However, very little is known how to counteract these deleterious effects. We postulate that the antioxidant properties of manganese (MnCl2) and magnesium chloride (MgCl2) can protect glial compartment from oxaliplatin-induced damage. In order to validate our hypothesis, we performed molecular and morphological assays to monitor the effectiveness of MnCl2 and MgCl2 during oxaliplatin treatment on different cell lines. Our data show the oxaliplatin-dependant effects on ROS production, endoplasmic reticulum stress, and caspase-3 activation. On the contrary, both MnCl2 and MgCl2 treatment are able to reduce oxidative and endoplasmic reticulum stress, as well as to retrieve caspase-3 activation. Moreover, BBB tight junction dysfunction and glial markers were analysed by immunofluorescent analysis. In conclusion, our results showed the ability of MnCl2 MgCl2, to oxidative and ER stress induced by oxaliplatin, suggesting that MnCl2 and MgCl2 could be a new tool to counteract the chemotherapy-dependent NVU alterations.