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Functional interrelationships between the intranuclear
organization of nucleic acids and regulatory proteins are
obligatory for fidelity of transcriptional activation and repres-
sion. In this article, using the Runx/AML/Cbfa transcription
factors as a paradigm for linkage between nuclear structure
and gene expression we present an overview of growing
insight into the dynamic organization and assembly of regu-
latory machinery for gene expression at microenvironments
within the nucleus. We address contributions of nuclear
microenvironments to the convergence and integration of
regulatory signals that mediate transcription by supporting
the combinatorial assembly of regulatory complexes.
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D
uring the past several years our understanding
of transcriptional control has evolved from
independent considerations of biochemical

mechanisms and concepts of nuclear morphology
that are associated with genes and gene transcripts.
There is growing appreciation for functional interre-
lationships between the intranuclear organization of
nucleic acids and regulatory proteins that are instru-
mental for transcriptional activation and suppression
in a biologically responsive manner. In this article we
will focus on the dynamic organization and assembly
of the regulatory machinery for gene expression at
microenvironments within the nucleus from the per-
spective of cellular requirements for physiological
control (Figure 1). Using the tissue specific
Runx/AML/Cbfa transcription factors as a paradigm
we will present an overview of a conceptual and
experimental basis for the regulation of gene expres-
sion within the three dimensional context of nuclear
architecture. We will address contributions of
nuclear microenvironments to the convergence and
integration of regulatory signals that mediate gene
expression by supporting the combinatorial assembly
of regulatory complexes. Temporal and spatial
parameters of control will be emphasized.

Gene expression within the three dimensional
context of nuclear architecture

Multiple levels of nuclear organization support
interrelationships between nucleic acids and regula-
tory proteins in a manner that mediates competency
for physiologically responsive expression or repres-
sion of genetically encoded information. During the
past several years there has been spectacular
progress in the identification and cataloguing of
genes and encoded proteins. And, an understanding
of the multidirectional exchange of regulatory sig-
nals between the extracellular environment and the
nucleus is rapidly expanding. However, the challenge
remains to gain insight into the rules that govern the
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integration of biological cues with the temporal and
spatial parameters of cell structure and function.

There is longstanding recognition that the repre-
sentation of protein coding and regulatory sequences
embedded in the genome are the primary level of
nuclear organization providing a blueprint for
responsiveness to accommodate short term homeo-
static regulation and longer term developmental and
phenotype-specific requirements of cells, tissues and
organs.

Chromatin structure and nucleosome organization
conformationally configure DNA to establish compe-
tency for protein/DNA and protein/protein interac-
tions at promoter elements as well as reduce dis-
tances between regulatory domains to synergistical-
ly interface the activities of transcription factors and
coregulatory proteins. The dynamic ATP-dependent
remodeling of chromatin organization and enzyme

dependent post translational modifications of his-
tones (e.g., acetylation, methylation and phosphory-
lation) are recognized as key mechanistic determi-
nants of chromatin-mediated promoter function.

And, while compartmentalization within the nucle-
us is well established as reflected by the packaging
of DNA as chromosomes during mitosis and the
ribosomal genes as nucleoli during interphase, it is
only recently that there has been a focus on contri-
butions of higher order nuclear organization to
architecturally supporting compartmentalization of
regulatory machinery in subnuclear microenviron-
ments. Consequently, the perception of a dichotomy
between nuclear morphology and regulatory activity
has given way to accruing appreciation that the rules
governing control of gene expression; as well as
those that are determinants of replication and repair,
operate in a seamless manner with the temporal and

Figure 1. Components of nuclear architecture are functionally linked to the organization and sorting of regulatory information. Nuclear
functions are organized into distinct, non-overlapping subnuclear domains. Nuclear matrix, the underlying network of anastomising net-
work of filaments and fibers provides structural basis for the functional compartmentalization of nuclear functions.
Immunofluorescence microscopy of the nucleus in situ has revealed the distinct subnuclear distribution of vital nuclear processes,
including (but not limited to) DNA replication sites and proteins involved in replication such as BRCA I; chromatin remodeling, e.g.,
mediated by the SWI/SNF complex; structural parameters of the nucleus, such as the nuclear envelope, chromosomes, and chromo-
somal territories; Runx domains for chromatin organization and transcriptional control of tissue-specific genes; and RNA synthesis and
processing involving, for example, transcription sites; SC35 domains, coiled bodies, and nucleoli as well as proteins that play a role in
cell survival, for example survivin. Subnuclear PML bodies of unknown function have been examined in numerous cell types. All these
domains are associated with the nuclear matrix.
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spatial organization of regulatory machinery. This
architectural organization of the combinatorial
components required for biological control occurs at
a series of intranuclear microenvironments where
multi component regulatory complexes are dynami-
cally assembled under conditions where threshold
levels of nucleic acids and proteins are present to
support activity within the confines of requirements
for biological responsiveness. Although the concept
of focally organized microenvironments that are
structurally and functionally linked to regulation is
not new, the extent to which this paradigm is opera-
tive is becoming inescapably evident. There is
increasing acceptance that fidelity of nuclear struc-
ture – gene expression interrelationships is necessary
for integration of regulatory signals that are associ-
ated with acquisition of cues and execution of
responses. The concept of checkpoints is therefore
being extended to encompass surveillance of a broad
spectrum of regulatory mechanisms that now
include parameters of cell cycle control together
with those that assess effectiveness of the organiza-
tion, assembly and activity of the machinery for
chromatin remodeling and the intranuclear place-
ment of regulatory complexes. It should not be sur-
prising that there are increasing examples of default
to apoptosis when standards for fidelity of the struc-
tural and functional properties of regulatory
machinery fall below expectations.

Runx/AML/Cbfa transcription factors provide a
paradigm for obligatory interrelationships
between subnuclear organization and gene
expression

The Runx2 (AML3/Cbfa1/PEBP2_) transcription
factor and the bone-specific osteocalcin gene serve
as paradigms for obligatory relationships between
nuclear structure and physiological control of skele-
tal gene expression (Banerjee et al., 1996; Ducy et
al., 1997; Javed et al., 1999; Javed et al., 2000;
Merriman et al., 1995). The modularly organized
promoter of the bone specific osteocalcin gene con-
tains proximal and distal regulatory elements that
support basal, tissue-specific as well as growth fac-
tor, homeodomain, signaling protein, and steroid hor-
mone responsive transcriptional control (reviewed in
(Banerjee et al., 1996; Bortell et al., 1992; Demay
et al., 1990; Ducy and Karsenty, 1995; Guo et al.,
1995; Hoffmann et al., 1994; Markose et al., 1990;
Merriman et al., 1995; Tamura and Noda, 1994,
Montecino et al. 1996; Lian et al., 1999).

Modulation of osteocalcin gene expression during
bone formation and remodeling requires physiologi-
cally responsive accessibility of these proximal and
upstream promoter sequences to regulatory and
coregulatory proteins as well as protein-protein
interactions that integrate independent promoter
domains. The nuclear matrix-associated Runx tran-
scription factors contribute to the control of skeletal
gene expression by sequence-specific binding to pro-
moter elements of target genes and serve as scaf-
folds for the assembly and organization of coregula-
tory proteins that mediate biochemical and architec-
tural control of promoter activity.

Runx-Mediated chromatin remodeling facilitates
promoter accessibility and integration of
regulatory activities

The concept of a central role for the architectural
organization of regulatory complexes within the
nucleus for physiologically responsive control of
gene expression is consistent with emerging evidence
for hierarchal scaffolding of regulatory complexes
that include the enzymology for chromatin remodel-
ing. The nuclear scaffold-associated RUNX1 and
RUNX2 transcription factors directly interact with
histone acetyltransferases and histone deacetylases
as well as functionally interact with promoter regu-
latory elements of hematopoietic and skeletal target
genes (Kitabayashi et al., 1998; Westendorf et al.,
2002; Westendorf and Hiebert, 1999). This interre-
lationship between nuclear structure and gene
expression provides a viable opportunity for charac-
terizing the assembly of regulatory machinery for
chromatin remodeling and transcriptional activa-
tion/suppression at intranuclear sites.

It is well recognized that genomic DNA is pack-
aged as chromatin. These bead-on-a-string struc-
tures, designated nucleosomes, are structurally
remodeled to accommodate requirements for tran-
scription, emphasizing the extent to which architec-
tural organization of genes is causally related to
functional activity.The identification and characteri-
zation of proteins that catalyze histone acetylation,
deacetylation and phosphorylation (Boyer et al.,
2000; de la Serna et al., 2001; de la Serna and
Imbalzano, 2002; Fischle et al., 2003a; Fischle et
al., 2003b; Fischle et al., 2003c; Formosa, 2003;
Hassan et al., 2001; Horn and Peterson, 2002;
Jaskelioff and Peterson, 2003; Jenuwein and Allis,
2001; Peterson, 2002a; Peterson, 2002b; Peterson,
2002c; Peterson, 2003; Rice et al., 2003; Rice and
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Allis, 2001) as well as the SWI/SNF-related proteins
(Becker and Horz, 2002; de la Serna et al., 2001;
Peterson and Workman, 2000) that facilitate chro-
matin remodeling and potentially the accessibility of
promoter sequences to regulatory and coregulatory
factors, represent an important dimension in control
of the structural and functional activities of genes
and promoter regulatory elements. Relationships of
regulatory signaling pathways to enhance activities
that modulate gene, chromatin and chromosome
organization can now be directly investigated.
Additional levels of specificity are provided by struc-
tural modifications of gene promoters that influence
competency for factor interactions. Simply stated,
changes in the architectural properties of promoter
elements determine effectiveness of gene regulatory
sequences as substrates for interactions with regula-
tory factors. The regulatory and regulated parame-
ters of chromatin remodeling and the rate limiting
steps in the relevant signaling cascades are being
actively pursued and unquestionably will provide
insight into skeletal gene regulatory mechanisms
from structural and functional perspectives.

The Runx-dependent chromatin organization of
the osteocalcin gene illustrates dynamic remodeling
of a promoter to accommodate requirements for
phenotype-related developmental and steroid hor-
mone responsive activity. Nuclease digestion and lig-
ation-mediated PCR analysis as well as in vitro
nucleosome reconstitution studies establish the
placement of nucleosomes in the proximal basal/tis-
sue specific domain and at the upstream vitamin D
responsive element, blocking accessibility of these
promoter sequences to regulatory proteins in imma-
ture bone cells when this skeletal-restricted gene is
suppressed (Breen et al., 1994; Gutierrez et al.,
2000; Montecino et al., 1994; Montecino et al.,
1996; Montecino et al., 1999; Paredes et al., 2002).
In response to developmental and skeletal regulato-
ry signals the striking removal of a nucleosome and
modifications in chromatin structure renders the
proximal promoter of the OC gene accessible to reg-
ulatory and coregulatory proteins that support basal
level activity (Javed et al., 1999; Montecino et al.,
1996; Montecino et al., 1999). Vitamin D enhance-
ment of osteocalcin gene transcription is associated
with removal of the nucleosome at the upstream
vitamin D responsive element that permits binding of
the vitamin D receptor-RXR heterodimer (Javed et
al., 1999; Montecino et al., 1996; Montecino et al.,
1999; Paredes et al., 2002). The retention of a

nucleosome between the proximal and upstream
enhancer domain reduces distance between the basal
and vitamin D responsive element and supports a
promoter configuration that is conducive to pro-
tein–protein interactions between the vitamin D
receptor and the basal TFIIB transcription factor
(Blanco et al., 1995; Guo et al., 1997; MacDonald
et al., 1995). Interaction of the vitamin D receptor
at the distal promoter region of the bone specific
osteocalcin gene requires nucleosomal remodeling
(Paredes et al., 2002).

Thus, insight into control of skeletal gene expres-
sion can be obtained from the understanding of
Runx-mediated mechanisms that alter osteocalcin
gene chromatin organization under biological condi-
tions. Site directed mutagenesis of osteocalcin genes
that are genetically integrated in stable cell lines
have established that Runx elements flanking the
proximal and upstream promoter sequences are
responsible for developmental and vitamin D-
induced chromatin remodeling (Javed et al., 1999).
Reduced CpG methylation is associated with tran-
scriptional activation of the bone-specific osteocal-
cin gene in osteoblasts (Villagra et al., 2002). In
vitro and in vivo genetic approaches have demon-
strated that Runx2 controls developmental and
steroid hormone-responsive chromatin reconfigura-
tion of the osteocalcin gene promoter (Gutierrez et
al., 2000; Javed et al., 1999). Chromatin immuno-
precipitation analyses have shown that developmen-
tal and vitamin D-linked remodeling of osteocalcin
gene promoter organization is accompanied by
acetylation of histones in the proximal basal and
upstream vitamin D responsive element domains
(Shen et al., 2002; Shen et al., 2003). This post-
translational modification of histone proteins
reduces the tenacity of histone DNA interactions in
a manner that is conducive to an open chromatin
organization with increased access to regulatory
factors. The most compelling evidence for a func-
tional involvement of chromatin organization in
skeletal gene expression is the obligatory relation-
ship of dynamic changes in the biochemical and
structural properties of osteocalcin gene promoter
organization with competency for bone tissue-
restricted and enhanced transcription in response to
vitamin D (Javed et al., 1999).

Yet, despite the cogent support for a central role of
chromatin remodeling in transcriptional control of
the osteocalcin gene, there are open-ended ques-
tions. It is not justifiable to extrapolate from these
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findings to conclude that all Runx-responsive genes
that are activated and suppressed during skeletoge-
nesis employ identical mechanisms. From a broader
biological perspective there are multiple levels of
control that must be mechanistically characterized
to explain physiologically responsive regulation of
chromatin structure within restricted and global
genomic contexts.

Runx transcription factors are scaffolds for the
combinatorial organization and assembly of gene
regulatory machinery

Functional interrelationships between nuclear
structure and gene expression are strikingly reflect-
ed by dual recognition of regulatory proteins, such as
Runx transcription factors, for interactions with
both promoter elements and coregulatory proteins;
such interactions modulate the structural and func-
tional properties of targeted genes at microenviron-
ments within the nucleus. Sequence-specific interac-
tions with promoter elements result in placement of
Runx proteins at strategic sites where they provide
scaffolds for protein-protein interactions that medi-
ate the organization of machinery for a broad spec-
trum of regulatory requirements. These include his-
tone modifications and chromatin remodeling that
establish competency for transcription factor bind-
ing and genomic conformations that interface activ-
ities at proximal and upstream promoter domains, as
well as the integration of regulatory cues from sig-
naling pathways that activate or suppress gene
expression in a physiologically responsive manner. As
a consequence, the Runx proteins are post-transla-
tionally modified (e.g., phosphorylated) to further
influence the extent to which they engage in regula-
tory activity.

The complexity of Runx regulatory proteins that
assemble as supercomplexes of transcriptional regu-
latory factors illustrates the potential impact on
skeletal-related gene expression. Recent documenta-
tion that Runx proteins are components of a stable
complex that includes basal transcription factors,
chromatin remodeling factors, and histone modify-
ing factors indicates the scope of Runx-mediated
combinatorial control.

A key component of the Runx complex is the
p300/CBP coactivator which functions as a tran-
scriptional adaptor. Interactions with several tran-
scription factors result in the formation of multi-
molecular complexes that regulate expression of a
broad spectrum of genes (Goodman and Smolik,

2000). p300 contains a domain with intrinsic his-
tone acetyltransferase (HAT) activity (Bannister et
al., 1995; Ogryzko et al., 1996) which has been
implicated in chromatin structure alterations associ-
ated with modulation of gene expression (Spencer
and Davie, 1999). p300 interacts with additional
proteins containing HAT activity that include P/CAF,
SRC-1 and ACTR. A basis is thereby provided for
formation of large multiprotein complexes that con-
tribute multiple HAT activities with options for
specificity (Chakravarti et al., 1996; Chen et al.,
1997; Spencer et al., 1997; Torchia et al., 1997;
Yang et al., 1996). It has been established that
Runx2 and p300 are components of the same
nuclear complexes in osteoblastic cells (Sierra et al.,
2003). Furthermore, when recruited to the osteocal-
cin gene promoter by Runx2, p300 stimulates both
basal and vitamin D-enhanced osteocalcin promoter
activity. Thus interactions of Runx2 with p300 sup-
ports assembly of multi-subunit complexes with sev-
eral HAT-containing proteins at a series of regulato-
ry regions of the bone-specific osteocalcin gene pro-
moter. In a parallel manner, Kitabayashi et al.
(1998) have shown that in myeloid cells Runx1, a
homologue of the bone-specific Runx2, interacts
with p300 and together upregulate myeloid-specific
genes. It was also determined that a C-terminal
region of the Runt domain in both Runx1 and
Runx2, is critical for their interactions with p300
(Kitabayashi et al., 1998; Sierra et al., 2003).
Considering the high degree of homology between
these two members of the Runx transcription factor
family, it is likely that the structural determinants for
Runx interactions with p300 are conserved.

p300 can also be recruited to gene promoters by
the transcription factor C/EBP (Mink et al., 1997;
Oelgeschlager et al., 1996). Interestingly, a C/EBP-
responsive regulatory element has been identified in
the proximal promoter region of the rat OC gene
adjacent to the Runx2 site C (Gutierrez et al.,
2002). C/EBP_ physically interacts with Runx2 and
synergistically activates the osteocalcin promoter
(Gutierrez et al., 2002), suggesting that both pro-
teins form a complex with p300 and together upreg-
ulate basal tissue-specific transcription. C/EBP_ has
additionally been shown to interact with ATP-
dependent chromatin remodeling complexes of the
SWI/SNF family (Kowenz-Leutz and Leutz, 1999),
recruiting these complexes to promoter sequences
and activating cell-specific expression.

In addition to functioning as transcriptional acti-
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vators, Runx proteins suppress gene expression.
Repression requires the recruitment of transcrip-
tional repressors and corepressors with histone
deacetylase activity (HDACs) to promoter regulato-
ry elements of genes that are downregulated.
Combinatorial control that dampens transcription is
illustrated by interaction of Runx2 with the tran-
scriptional corepressors TLE/Groucho through a
conserved VWRPY domain located at the C-termi-
nus of the protein, which represses the expression of
the bone sialoprotein (BSP) gene in osteoblastic
cells (Javed et al., 2000). Another example of com-
binatorial control that results in transcriptional sup-
pression by Runx2 is downregulation of the p21CIP/WAF

promoter in fibroblastic and osteoblastic cells. Here
HDAC6 interacts with a second repression domain
that also resides in the C-terminal region of Runx2
and is recruited to chromatin by Runx2 (Westendorf
et al., 2002). Taken together, these results are con-
sistent with combinatorial control that is mediated
by Runx-dependent recruitment of coactivator and
corepressors proteins that are associated with and
organized as multiprotein complexes to activate or
repress target genes in a physiologically responsive
manner.

These findings indicate that Runx factors engage
in protein-DNA and protein-protein interactions that
collectively determine the composition and organiza-
tion of promoter regulatory complexes.The inclusion
of chromatin remodeling activity in these multi-sub-
unit complexes provides a biochemical basis for con-
formational modifications of promoter elements as
well as combinatorial specificity for transcription.

Transcription factors that function as scaffolds for
interaction with coregulatory proteins provide an
architectural basis for accommodating the combina-
torial requirements of biological control. Combina-
torial control supports replication, transcription and
repair by two mechanisms. Context dependent com-
binations and permutations of regulatory proteins
are assembled into multipartite complexes that
increase specificity. Scaffold associated protein-
DNA and protein-protein interactions permit inte-
gration of regulatory activities. Nuclear microenvi-
ronments are thereby organized, with gene promot-
ers as focal points, where threshold concentrations
of regulatory macromolecules are attained. The
complexity that is achieved by these architecturally
organized oligomeric factors can maximize options
for responsiveness to diverse regulatory require-
ments for transient and long term biological control.

Intranuclear trafficking of runx regulatory proteins:
a mechanism for the organization of subnuclear
microenvironments that mediate gene expression

Association of osteoblast, myeloid, and lymphoid
Runx transcription factors that mediate tissue-spe-
cific transcription with the nuclear matrix has per-
mitted direct examination of mechanisms for target-
ing regulatory proteins to subnuclear sites where
regulatory events occur (Bae et al., 1993; Banerjee
et al., 1996; Banerjee et al., 1997; Ducy et al.,
1997; Frank et al., 1995; Merriman et al., 1995;
Meyers et al., 1993; Meyers et al., 1995; Meyers et
al., 1996; Nuchprayoon et al., 1994; Satake et al.,
1995; Wang et al., 1993; Zeng et al., 1997). Both
biochemical and immunofluorescence analyses have
shown that Runx transcription factors exhibit a
punctate nuclear distribution that is associated with
the nuclear matrix in situ (Tang et al., 1998; Zaidi
et al., 2002a; Zeng et al., 1997; Zeng et al., 1998).
Taken together, these observations are consistent
with the concept that the nuclear matrix is function-
ally involved in gene localization and in the concen-
tration and subnuclear localization of regulatory
factors (Bidwell et al., 1993; Blencowe et al., 1994;
Dworetzky et al., 1992; Mancini et al., 1994;
Nickerson et al., 1995; van Wijnen et al., 1993;
Zeng et al., 1997).

The initial indication that nuclear matrix associa-
tion of Runx factors is required for maximal activi-
ty was provided by the observation that transcrip-
tionally active Runx proteins associate with the
nuclear matrix but inactive C-terminally truncated
Runx proteins do not (Choi et al., 1999; Choi et al.,
2001; Javed et al., 2000; Zaidi et al., 2002a; Zaidi
et al., 2002b; Zeng et al., 1997).This localization of
Runx was established by biochemical fractionation
and in situ immunofluorescence as well as by green
fluorescent protein tagged Runx proteins (Har-
rington et al., 2002) in living cells. Colocalization of
Runx1, 2, and 3 at nuclear matrix-associated sites
indicates a common intranuclear targeting mecha-
nism may be operative for the family of Runx tran-
scription factors (Harrington et al., 2002; Javed et
al., 2000;Tang et al., 1998).Variations in the parti-
tioning of transcriptionally active and inactive Runx
between subnuclear fractions permitted development
of a strategy to identify a region of the Runx tran-
scription factors that directs the regulatory proteins
to nuclear matrix-associated foci. Association of
osteogenic and hematopoietic Runx proteins with
the nuclear matrix is independent of DNA binding
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and requires a nuclear matrix targeting signal, a 31
amino acid segment near the C-terminus that is dis-
tinct from nuclear localization signals (Zeng et al.,
1997).The nuclear matrix targeting signal functions
autonomously and is necessary as well as sufficient
to direct the transcriptionally active Runx transcrip-
tion factors to nuclear matrix-associated sites where
gene expression occurs (Zeng et al., 1997).

These findings indicate mechanisms involved in the
selective trafficking of proteins to specialized
domains within the nucleus where they become com-
ponents of functional regulatory complexes. At least
two trafficking signals appear to be required for sub-
nuclear targeting of Runx transcription factors; the
first supports nuclear import (nuclear localization
signal) and a second mediates association with the
nuclear matrix (nuclear matrix targeting signal).
The multiplicity of determinants for nuclear local-
ization and alternative splicing of Runx messenger
RNA may provide the requisite complexity to sup-
port targeting to specific sites within the nucleus in
response to diverse biological conditions.
Furthermore, because gene expression by Runx
involves contributions by factors and coregulatory
proteins that include CBFβ (Banerjee et al., 1996;
Giese et al., 1995; Kundu et al., 2002; Mao et al.,
1999; Miller et al., 2002; Ogawa et al., 1993; Xie et
al., 1999) and C/EBP (Gutierrez et al., 2002;
Zhang et al., 1996), Groucho/TLE (Javed et al.,
2000; Javed et al., 2001; Levanon et al., 1998),
HES and SMAD (Zaidi et al., 2002b; Zhang et al.,
2000), Runx may facilitate recruitment of these fac-
tors to the nuclear matrix.

Association of genes and cognate factors with the
nuclear matrix may support the formation and/or
activities of nuclear domains that facilitate tran-
scriptional control (Alvarez et al., 1997; Berezney et
al., 1996; Chen et al., 1996; Davie, 1997; Grande et
al., 1997; Guo et al., 1995; Jackson, 1997; Linden-
muth et al., 1997; Merriman et al., 1995; Nardozza
et al., 1996; Nickerson et al., 1995; Stein et al.,
1996). Results from our laboratory indicate that the
association of Runx transcription factors with the
nuclear matrix is obligatory for activity (Choi et al.,
2001; Zeng et al., 1998). The promoter recognition
function of the runt homology domain of Runx, and
thus the consequential interactions with Runx-
responsive genes, is essential for formation of tran-
scriptionally active foci containing Runx and RNA
polymerase II that are nuclear matrix associated
(Zeng et al., 1998). Additionally, the nuclear matrix

targeting signal supports transactivation when asso-
ciated with an appropriate promoter, and transcrip-
tional activity of the nuclear matrix targeting signal
depends on association with the nuclear matrix
(Zeng et al., 1998). Taken together, targeting of
Runx transcription factors to the nuclear matrix is
important for their function and transcription.
However, components of the nuclear matrix that
function as acceptor sites remain to be established.
Characterization of such nuclear matrix components
will provide an additional dimension to characteriz-
ing molecular mechanisms associated with gene
expression—the targeting of regulatory proteins to
specific spatial domains within the nucleus.

Subnuclear targeting supports the integration of
signaling pathways and execution of regulatory
signals

Gene expression during skeletal development and
bone remodeling is controlled by a broad spectrum
of regulatory signals that converge at promoter ele-
ments to activate or repress transcription in a phys-
iologically responsive manner. The subnuclear com-
partmentalization of transcription machinery neces-
sitates a mechanistic explanation for directing sig-
naling factor to sites within the nucleus where gene
expression occurs under conditions that support
integration of regulatory cues. The interactions of
YAP and SMAD coregulatory proteins with C-ter-
minal segments of the Runx2 transcription factor
permit assessment of requirements for recruitment
of cSRC and BMP/TGFβ-mediated signals to skele-
tal target genes. Our findings indicate that nuclear
import of YAP and SMAD coregulatory factors is
agonist dependent. However, there is a stringent
requirement for fidelity of Runx subnuclear target-
ing for recruitment of these signaling proteins to
transcriptionally active subnuclear foci. Our results
demonstrate that the interactions and spatial-tem-
poral organization of Runx and SMAD as well as
YAP coregulatory proteins are essential for assem-
bly of transcription machinery that supports expres-
sion or repression of skeletal genes (Zaidi et al.,
2002a; Zaidi et al., 2002b). Targeted mutations in
the Runx nuclear matrix targeting signal have
directly demonstrated that interactions of Runx with
SMAD and YAP are sustained. However, execution
of the BMP and Src regulatory signals are blocked.
Competency for intranuclear trafficking of Runx
proteins has similarly been functionally linked with
the subnuclear localization and activity of
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TLE/Groucho coregulatory proteins (Javed et al.,
2000).These findings are consistent with Runx pro-
teins serving as a scaffold for combinatorial interac-
tions with coregulatory proteins that contribute to
biological control and a requirement for intranu-
clear trafficking to complete the transduction and
implementation of regulatory signals that are requi-
site for physiological responsiveness.

In vivo consequences of aberrant intranuclear
trafficking of Runx transcription factors

Using Runx2 and its essential role in osteogenesis
as a model, we investigated the fundamental impor-
tance of subnuclear localization for tissue differenti-
ation by deleting the intranuclear targeting signal
via homologous recombination. Mice homozygous
for the deletion (Runx2DC) do not form bone due to
perturbed maturation or arrest of osteoblasts.
Heterozygotes do not develop clavicles, but are oth-
erwise normal. These phenotypes are indistinguish-
able from those of the Runx2 homozygous and het-
erozygous null mutants, indicating that the intranu-
clear targeting signal is a critical determinant for
function. The expressed truncated Runx2DC protein
enters the nucleus and retains normal DNA binding
activity, but shows complete loss of intranuclear tar-
geting. These results establish that the multifunc-
tional N-terminal region of the Runx2 protein is not
sufficient for biological activity. Our results demon-
strate that subnuclear localization of Runx factors
in specific foci together with associated regulatory
functions is essential for control of Runx-dependent
genes involved in tissue differentiation during embry-
onic development (Choi et al., 2001). The impor-
tance of subnuclear localization of Runx transcrip-
tion factors for biological control is further indicat-
ed by compromised subnuclear organization and
activity of Runx1 hematopoietic regulatory proteins
in acute myelogenous leukemia (McNeil et al.,
1999) where substitution of intranuclear trafficking
signals in translocation– fusion proteins redirects the
regulatory factors to alternate subnuclear sites
where target genes reside (Barseguian et al., 2002).

Mitotic partitioning and selective reorganization
of tissue-specific transcription factor foci in
progeny cells

Runx transcription factors provide a model for
characterizing the distribution of regulatory pro-
teins to progeny cells during mitosis. Runx proteins
are organized as transcriptionally active subnuclear

foci throughout the interphase nucleus that support
Runx dependent integration of regulatory signals
e.g., BMP and Src signals (Harrington et al., 2002;
Zaidi et al., 2002b; Zaidi et al., 2003a). Post-mitot-
ic gene expression requires restoration of nuclear
organization and assembly of regulatory complexes.
By the combined use of quantitative in situ immuno-
fluorescence microscopy and quantitative image
analysis, we have demonstrated that Runx foci per-
sist throughout mitosis and undergo a spatio-tem-
poral redistribution that results in equal partition-
ing of the protein into each of the progeny nuclei
(Figure 2) (Zaidi et al., 2003b). Loss of both
amount and subnuclear organization of Runx pro-
teins is associated with genetic disorders (Choi et
al., 2001; McNeil et al., 1999; Zhang et al., 2000).
Equal partitioning and a complete restoration of
subnuclear organization of Runx foci in telophase
provides a mechanism for maintenance of cellular
levels and activity of Runx proteins following mito-
sis.These findings are consistent with a requirement
of Runx factors for post-mitotic transcriptional
control and assembly of multi-component complex-
es to regulate Runx responsive genes. Furthermore,
subnuclear organization of Runx foci precedes that
of SC35 RNA processing speckles following cell
division. Taken together, these findings demonstrate
a spatio-temporal partitioning and reorganization
of regulatory factors that render progeny cells
equivalently competent for the resumption of tissue
specific gene expression.

The assembly and organization of nuclear
microenvironments that govern transcriptional
control

Multiple lines of evidence suggest that compo-
nents of nuclear architecture contribute both struc-
turally and enzymatically to control gene expression
during hematopoietic and osteoblast differentiation.
Sequences have been identified that direct Runx
transcription factors to nuclear matrix-associated
sites that support transcription in a cell cycle
dependent manner (Zaidi et al., 2003b). Insight is
thereby provided into mechanisms linked to the
assembly and activities of subnuclear domains
where transcription occurs. In a restricted sense, the
foundation has been provided for experimentally
addressing intranuclear trafficking of gene regula-
tory factors and control of association with the
nuclear matrix to establish and sustain domains
that are competent for transcription. The unique
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sequences (Zeng et al., 1997; Zeng et al., 1998)
and crystal structure for the 31 amino acid nuclear
matrix targeting signal of Runx transcription fac-
tors (Tang et al., 1998) support specificity for local-
ization at intranuclear sites where the regulatory
machinery for gene expression is assembled, ren-
dered operative, and/or suppressed. In a broader
context, there is growing appreciation for involve-
ment of nuclear architecture in a dynamic and bidi-
rectional exchange of gene transcripts and regula-
tory factors between the nucleus and cytoplasm, as
well as between regions and structures within the
nucleus (Gasser, 2002; Lamond and Earnshaw,
1998; Misteli, 2000; Stein et al., 2000).

It would be presumptuous to propose a single
model to account for the specific pathways that
direct transcription factors to sites within the nucle-
us that support transcription. However, findings sug-
gest that parameters of nuclear architecture func-
tionally interface with components of transcription-
al control. The involvement of nuclear matrix-asso-
ciated transcription factors with recruitment of reg-
ulatory components to modulate transcription
remains to be defined.Working models that serve as
frameworks for experimentally addressing compo-
nents of transcriptional control within the context of

nuclear architecture can be compatible with mech-
anisms that involve architecturally or activity driven
assembly of transcriptionally active intranuclear
foci. The diversity of targeting signals must be
established to evaluate the extent to which regula-
tory discrimination is mediated by encoded intranu-
clear trafficking signals. It will additionally be
important to biochemically and mechanistically
define the checkpoints, which are operative during
subnuclear distribution of regulatory factors, and
the editing steps, which are invoked to ensure that
structural and functional fidelity of nuclear
domains, where replication and expression of genes
occur.There is emerging recognition that placement
of regulatory components of gene expression must
be temporally and spatially coordinated to optimal-
ly mediate biological control.

The organization and assembly of regulatory
machinery in subnuclear microenvironments where
the combinatorial components of regulatory mecha-
nisms are represented at threshold concentrations
are not confined to AML-mediated transcriptional
control. An analogous focal organization of nucleic
acids and regulatory proteins within the nucleus is
evident in Cajal bodies, PML bodies (Avni et al.,
2003), ALL foci (Yano et al., 1997), as well as in
sites of replication (Wei et al., 1998) and repair
(Avni et al., 2003; Jackson, 2002; Petrini and
Stracker, 2003). Recently accrued knowledge of
nucleolar-mediated activities and expanded insight
into the implications for intranuclear localization of
chromosomal territories (Boyle et al., 2001; Croft et
al., 1999; Gerlich et al., 2003; Parada and Misteli,
2002; Sun et al., 2000; Tanabe et al., 2002;
Verschure et al., 1999) reinforces the relevance of
nuclear organization to fidelity of regulatory mech-
anisms.The common denominator is that each is an
example of multicomponent regulatory complexes
that are functionally responsive to a broad spectrum
of physiological signals. Perturbations in the compo-
sition, organization or intranuclear placement
appear to be associated with aberrant biological
control.

It is realistic to anticipate that further understand-
ing of mechanisms that dynamically position genes
and regulatory factors for establishment and mainte-
nance of cell phenotypes will clarify nuclear struc-
ture-function interrelationships that are operative
during differentiation and required for physiological-
ly responsive modulation of regulatory activity.

Figure 2. Partitioning of Runx proteins ensures competency for
post-mitotic gene phenotypic gene expression Runx proteins
are distributed at punctate subnuclear foci throughout the inter-
phase and telophase nuclei, and partition equivalently in proge-
ny cells following cell division. Progeny cells are equivalently
competent to support phenotypic gene expression. ROS 17/2.8
osteosarcoma cells were subjected to in situ immunofluores-
cence microscopy. Runx2 proteins were immunolabeled with
Alexa 488 fluorochrome.  
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