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The anatomical distribution of PACAP-like immunoreactivity
was investigated in sensory and peripheral organs of the
zebrafish, Danio rerio, during the pharyngula, hatching and
larval periods, by using indirect immunofluorescence meth-
ods. First PACAP-like immunoreactive (ir) elements appeared
during the pharyngula period, at 24 hours post fertilization
(hpf), within the most superficial layer of the retina and the
dorsal aorta. At 48 hpf, additional ir cells were found in the
olfactory placode and esophagus. At 72 hpf (hatching peri-
od), PACAP-like immunoreactivity was first detected in the
ganglion cell layer of the retina, the otic sensory epithelium,
pharyngeal arches, swim bladder and pancreatic progenitor
cells. During day 5 of larval development, new groups of ir
cells appeared in the liver, whereas no ir elements were
observed in the olfactory placode. Subsequently, at day 13
of larval development, additional ir elements were found for
the first time in some gut epithelial cells while those previ-
ously observed in the retina and otic sensory epithelium
were absent. The transient expression of PACAP-like ir mate-
rial in sensory organs suggests that the peptide could be
implicated in neurotrophic activities and neurosensorial con-
nections in the migration and/or differentiation processes.
The appearance of PACAP-like ir elements in peripheral
organs at different developmental stages, indicates that this
peptide could be involved in the control of more specific
functions as soon as these peripheral structures begin to
operate.
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P
ituitary adenylate cyclase-activating
polypeptide (PACAP) is a 38-amino acid
amidated neuropeptide first isolated from

the ovine hypothalamus on the basis of its ability to
stimulate cyclic AMP formation in rat pituitary
cells (Miyata et al., 1989). Subsequently, an ami-
dated proteolytic fragment of PACAP, correspon-
ding to the (1-27) N-terminal sequence of the pep-
tide was isolated in sheep (Miyata et al., 1990).
Structurally, PACAP is a member of the
secretin/glucagon/vasoactive intestinal polypeptide
family that includes peptide histidine isoleucine,
peptide histidine methionine, gastric inhibitory pep-
tide, growth hormone-releasing hormone (GHRH),
helospectin and helodermin (Campbell and Scanes
1992). The cDNA encoding the PACAP precursors
has been cloned in humans (Ohkubo et al., 1992),
sheep (Kimura et al., 1990) and rats (Ogi et al.,
1990). The analysis of the deduced amino acid
sequences shows that the structure of PACAP38
has been fully maintained in these mammalian
species (Kimura et al., 1990). The sequence of
PACAP has been remarkably well preserved
throughout evolution (Vaudry et al., 2000). In par-
ticular, in zebrafish, as well as in chicken and frog
(Chartrel et al., 1991, McRory et al., 1997,
Alexandre et al., 2000), the structure of PACAP38
is strikingly similar to the one found in mammals
(Miyata et al., 1989; Fradinger and Sherwood,
2000). There has been great evolutionary pressure
to maintain the sequence of the PACAP molecule,
thus indicating that the peptide must play important
physiological functions.

Soon after its isolation, PACAP was shown to be
present not only in the hypothalamus but also in
other brain areas and peripheral organs (Arimura
and Shioda, 1995). In vivo and in vitro studies have
shown that PACAP exerts multiple activities as a
hypothalamic hormone, neurotransmitter, neuro-
modulator and neurotrophic factor. In mammalian
peripheral tissues, it has been shown that PACAP
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has a strong relaxant action on smooth muscle
fibers of blood vessels, lung and gut, stimulates gas-
tric acid and intestinal secretion, hormone/enzyme
release from pancreas, and induces or inhibits neu-
roendocrine cell proliferation (Gonzalez et al.,
1998). Recent data also describes the effect of
PACAP on hepatic bicarbonate secretion (Glad et
al., 2003) and its role as critical hormonal regula-
tor of lipid and carbohydrate metabolism (Gray et
al., 2001). PACAP and/or PACAP receptors have
also been found in certain sensorial organs in mam-
mals, such as the adult and fetal retina (Nilsson et
al., 1994; Onali and Olianas, 1994; Wang et al.,
1995; Olianas et al., 1997).

In fish, PACAP heavily stimulates the secretion of
growth hormone (Parker et al., 1997; Montero et
al., 1998; Wong et al., 1998; Rousseau et al.,
2001; Wirachowsky et al., 2000; Wong et al.,
2000) and gonadotropin (Chang et al., 2001).
Moreover, in fish it can control contractions in the
intestine (Matsudaa et al., 2000; Olsson et al.,
2000) and induce catecholamine secretion from
chromaffin tissue (Montpetit and Perry, 2000).

It is now well known that, in the central nervous
system, PACAP promotes cell proliferation
(Matsumoto et al., 1993; Lu and DiCicco-Bloom,
1997; Lu et al., 1998), neurite outgrowth (Deutsch
et al., 1993; Gonzalez et al., 1997) and protein
synthesis (West et al., 1995) suggesting its involve-
ment in neurotrophic activities (Lindholm et al.,
1998; Vaudry et al., 1999). PACAP and its recep-
tors have already been described in the central and
peripheral nervous system of the mammalian
embryo (Arimura et al., 1994; Lindholm et al.,
1998; Nielsen et al., 1998; Sheward et al., 1998;
Skoglosa et al., 1999; Zhou et al., 1999; DiCicco-
Bloom et al., 2000) and the ontogeny of PACAP
has been studied in detail in the CNS of the frog as
well (Mathieu et al., 2001). To our knowledge,
studies in fish related to the developmental changes
of PACAP expression have been performed in rain-
bow trout and zebrafish as well (Krueckl and
Sherwood, 2001; Krueckl et al., 2003). In particu-
lar, in zebrafish, the authors described the expres-
sion of ghrh-pacap 1 transcript only during seg-
mentation, gastrulation and first embryonal stages.
In addition, we have recently investigated the dis-
tribution of PACAP immunoreactivity in the
zebrafish brain throughout a longer developmental
period, starting from embryonal up to juvenile
stages, as well as in adult animals (work in press).

However, there is no data available yet on the dis-
tribution of PACAP ir system in zebrafish peripher-
al and sensory organs during embryonal and larval
development. Thus, we have decided to investigate
the developmental changes of PACAP-like
immunoreactivity in peripheral and sensory organs
of the zebrafish, Danio rerio, starting from the
pharyngula period as far as the late larval period.
This study represents a first step towards the
understanding of PACAP function during the onto-
genesis of peripheral and sensorial structures in
zebrafish. In particular, although the PACAP
expression pattern has been already investigated
during early zebrafish embryogenesis (Krueckl et
al., 2003), there still isn’t sufficient information on
the presence and/or function of PACAP system
during later embryonal stages as well as at
posthatching and larval periods. We chose Danio
rerio because it’s a common and simple model for
ontogenetic studies.

Materials and Methods

Animals
Specimens of zebrafish, Danio rerio, at different

stages of development during the pharyngula peri-
od (24 and 48 hpf), the hatching period (72 hpf)
and the larval period (day 5, day 13), were sampled
from different aquaria, at 25-28°C. At least 5 ani-
mals were used for each stage. The developmental
stages were classified according to Kimmel et al.,
(1995). The fishes were anesthetized with tricaine
methane-sulfonate (MS 222, Sigma Chemical Co.,
MO), fixed in freshly prepared Bouin’s fluid or in
4% paraformaldehyde in cold phosphate buffered
saline (PBS) 0.2 M, pH 7.4, at room temperature
for 4 h. Paraffin-embedded, 4 µm thick, serial sagit-
tal, frontal or coronal sections were mounted on
chrome alum/gelatin-coated glass slides.

Animal manipulations and experimental protocols
were performed according to the recommendations
of the Ethical Committee of our institution and
under the supervision of authorized investigators.

Immunofluorescence procedure
The sections were rehydrated and processed using

indirect immunofluorescence microscopy. Briefly,
the sections were rinsed in cold phosphate-buffered
saline, preincubated with normal swine serum
(1:50) for 20 min to reduce non specific staining,
and incubated in a dark moist chamber for 18 h at



4°C with a polyclonal antiserum raised in rabbit
against mammalian PACAP38 (Peninsula,
Belmont, CA). The antiserum was diluted 1:200 in
PBS, containing 1% BSA and 0.3% Triton X-100.
Then, the sections were rinsed several times in PBS
and incubated for 1 h at room temperature with flu-
orescein isothiocyanate-conjugated swine anti-rab-
bit gamma globulins (Dakopatts, Copenhaghen,
Denmark), diluted 1:100 in PBS. Finally, the sec-
tions were rinsed twice in PBS, mounted in glyc-
erol/PBS (1:5), and examined under a Zeiss epiflu-
orescence microscope (Oberkochen, Germany).
Nomenclature of zebrafish areas at the different
stages of development was based on the work of
Kimmel et al., (1995).

Specificity of the immunoreaction
The specificity of the immunoreaction was veri-

fied by (1) substitution of the primary antiserum
with PBS; (2) replacement of the primary anti-
serum with nonimmune rabbit serum diluted 1:200;
preincubation of the PACAP antiserum with syn-
thetic PACAP38, PACAP27,VIP or CRF (10-7 M
each).

Results

The distribution of PACAP-like ir elements in the
sensory and peripheral organs of the zebrafish,
Danio rerio, was investigated in animals at stages

ranging from the pharyngula period to the larval
period. Incubation of sections with the PACAP
antiserum revealed the presence of positive ele-
ments during the pharyngula period (24 and 48 hpf
stages), hatching period (72 hpf stage) and larval
period (day 5 and day 13). No differences were
found between Bouin-fixed and paraformaldehyde-
fixed tissues. The anatomical distribution and rela-
tive density of PACAP-like ir material in sensory
and peripheral organs of Danio rerio during the dif-
ferent stages of development is schematically illus-
trated in Figure 1. For abbreviations see the list and
Table 1.

Pharyngula period
24 hpf stage

During the 24 hpf stage, ir elements first
appeared in some sensory and peripheral organs. In
particular, a group of positive cells was found in the
most superficial layer of the retina (Figure 2A, level
1a in Figure 1). A second group of ir cells showing
a bright fluorescence was first detected in the dor-
sal aorta (Figure 2B, level 2a in Figure 1).

48 hpf stage
At the 48 hpf stage, new ir elements appeared in

both sensory and peripheral organs. In particular, in
sensory organs, positive cells were first observed in
the caudal portion of the olfactory placode (Figure
2C, level 1b in Figure 1). Ir elements were still pres-
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Table 1. Distribution and relative density of PACAP-like ir cells and fibers in sensory and peripheral organs of  Danio rerio at the pharyn-
gula period (24 hpf and 48 hpf stages), the hatching period (72 hpf stage) and the larval period (day 5 and day 13).

Pharyngula period Hatching period Larval period

24 hpf 48 hpf 72 hpf Day 5 Day 13
cells fibers cells fibers cells fibers cells fibers cells fibers

Dorsal aorta (Da) ++ - ++ - ++ - ++ - ++ -
Esophagus (E) - - +++ - +++ - +++ - +++ -
Ganglion cells layer of the retina (Gcl) - - - - ++ - ++ - --
Gut (I) - - - - - - - - ++ -
Intestine (I) - - - - - - - - - +++
Liver (L) - - - - - - ++ - ++ -
Olfactory placode (Op) - - ++ - ++ - - - - -
Otic sensory epithelium (Ose) - - - - +++ - +++ - - -
Pancreas (Pa) - - - - +++ - +++ - +++ -
Pharyngeal arches (Pha) - - - - ++ - ++ - ++ -
Superficial layer of the retina (Slr) ++ - ++ - ++ - ++ - - -
Swim bladder (Sb) - - - - +++ - - - - -

+, low density; ++, moderate density; +++, high density; -, absence of PACAP-like immunoreactivity; Cc: cranial cavity; Da: dorsal aorta; Di: diencephalon; E: esophagus; Ep: ethmoid
plate; Exp: exocrine pancreas; G: gut; Gcl: ganglion cells layer of the retina; Hyv: hypothalamus, ventral part; Ipl: inner plexiform layer of the retina; L: liver; Le: lens; N: nothocord; On:
optic nerve; Op: olfactory placode; Ose: otic sensory epithelium; Pa: pancreas; Pc: parachordal cartilage; Pd: pronephric duct; Ph: pharynx; Pha: pharyngeal archs; Ppd: pituitary pars
distalis; Rc: rhodes and cones of the retina; Rh: rhombencephalon; Sb: swim bladder; Sc: spinal cord; Slr: superficial layer of the retina; Tb: trabeculae; Te: tectum of the mesen-
cephalon; Tel: telencephalon; Tg: tegmentum of the mesencephalon; Y: yolk.
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Figure 1. Schematic drawings illustrating the distribution of PACAP-like ir elements in sensory and peripheral organs of the zebrafish,
Danio rerio, at the pharyngula period (24 hpf and 48 hpf stages), hatching period (72 hpf stages) and larval period (day 5 and day 13).
The ir cells are represented by stars.

Abbreviations of Figure 1 and figure 2 (next page)
Cc: cranial cavity; Da: dorsal aorta; Di: diencephalon; E: esophagus; Ep: ethmoid plate; Exp: exocrine pancreas; G: gut; Gcl: ganglion cells layer of the retina; Hyv: hypothalamus, ventral
part; Ipl: inner plexiform layer of the retina; L: liver; Le: lens; N: nothocord; On: optic nerve; Op: olfactory placode; Ose: otic sensory epithelium; Pa: pancreas; Pc: parachordal cartilage;
Pd: pronephric duct; Ph: pharynx; Pha: pharyngeal archs; Ppd: pituitary pars distalis; Rc: rhodes and cones of the retina; Rh: rhombencephalon; Sb: swim bladder; Sc: spinal cord; Slr:
superficial layer of the retina; Tb: trabeculae; Te: tectum of the mesencephalon; Tel: telencephalon; Tg: tegmentum of the mesencephalon; Y: yolk.
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Figure 2. Immunofluorescence photographs showing the distribution of PACAP-like immunoreactivity in the sensory and peripheral
organs of Danio rerio at the pharyngula period (24 hpf and 48 hpf stages) and hatching period (72 hpf stage). A: Coronal section show-
ing a group of PACAP-like positive cells (arrows) located in the most superficial layer of the retina (Slr; level 1a in Figure 1). 24 hpf
stage. Bouin-fixed tissue. B: Coronal section showing bright fluorescent ir cells (arrows) in the dorsal aorta (level 2a in Figure 1). Da,
dorsal aorta; My, myotome; N, notochord; Pd, pronephric ducts. 24 hpf stage. Bouin-fixed tissue. C: A small group of bright fluores-
cent positive cells (arrows) located in the caudal portion of the olfactory placode (level 1b in Figure 1). Did, dorsal diencephalon; Op,
olfactory placode; Telm, medial telencephalon. 48 hpf stage. Coronal section of a bouin-fixed tissue. D: Numerous bright stained pos-
itive cells (arrows) located adjacent to the lumen (Lu) of the developing esophagus (level 2b in Figure 1). E, esophagus. 48 hpf stage.
Coronal section of a bouin-fixed tissue. E: Bright fluorescent immunopositive cells (arrows) in the granular cells layer of the retina
(Gcl; level 1c in Figure 1). 72 hpf stage. Coronal section of a paraformaldehyde-fixed tissue. F: Coronal section showing two groups
of ir cells (arrows) at level of the otic sensorial epithelium (Ose; levels 2c and 3c in Figure 1). Cc, cranial cavity; N, notochord; Pc,
parachordal cartilage; Pha, pharyngeal arches. 72 hpf stage. Paraformaldehyde-fixed tissue. Scale bars: 200 µµm.



ent in the most superficial layer of the retina (level
1b in Figure 1). In peripheral organs, a high num-
ber of bright fluorescent ir cells was first detected
in the developing esophageal epithelium (Figure
2D, level 2b in Figure 1). As observed at 24 hpf
stage, ir cells were present in the dorsal aorta (level
3b in Figure 1).

Hatching period
72 hpf stage

During the 72 hpf stage, a moderate number of
bright fluorescent immunopositive cells first
appeared in the ganglion cell layer of the retina
(Figure 2E, level 1c in Figure 1) and numerous
PACAP-like ir cells were first observed in the otic
sensory epithelium (Figure 2F, levels 2c and 3c in
Figure 1). In peripheral organs, new ir elements
were present in the epithelium of the developing
pharyngeal arches (Figure 3A-B, levels 2c and 3c in
Figure 1). A bright fluorescent immunoreactivity
was found for the first time in numerous cells of the
swim bladder and in the exocrine pancreas progen-
itor cells adjacent to the yolk (Figure 3B, level 3c
in Fig. 1).The distribution of PACAP-like ir mate-
rial in the dorsal aorta and developing esophagus
was similar to that observed at 48 hpf stage of
pharyngula period (levels 4c and 5c in Figure 1).

Larval period
Day 5 

During day 5 of larval period, the distribution of
PACAP-like immunoreactivity in sensory organs
was similar to that described at previous develop-
mental stages. In particular, ir elements were still
found in the retina (level 1d in Figure 1) as well as
in the otic sensory epithelium (level 2d in Figure 1).
On the other hand, no ir elements were observed in
the olfactory placode. In peripheral organs, in addi-
tion to bright fluorescent positive cells located in
the exocrine portion of the pancreas, moderate con-
centrations of ir cells were also observed for the
first time in the liver (Figure 3C, level 4D in Figure
1). No immunopositive elements were observed in
the swim bladder. By contrast, the distribution of
PACAP-like ir elements in the pharyngeal arches,
esophagus and dorsal aorta was similar to that
described at the hatching period (levels 2d-5d in
Figure 1).

Day 13 
At day 13 of larval development, the distribution

of PACAP-like ir material in sensory and peripher-
al organs showed some differences when compared
to the observations of day 5 of larval stage. In sen-
sory organs, the ir elements previously observed in
the retina and otic sensory epithelium disappeared.
By contrast, in peripheral organs, a moderate num-
ber of immunopositive cells was first detected in the
gut epithelium (Figure 3D, level 3e in Figure 1).
High concentrations of moderate fluorescent ir
fibers were also present in the smooth muscolar
wall layer of the intestine (Figure 3E). The distri-
bution of PACAP-like ir system in the pharyngeal
arches, esophagus, liver, pancreas and dorsal aorta
was similar to that described at day 5 of larval
stage (levels 1e-4e in Figure 1).

Specificity of the immunoreaction
Preincubation of the PACAP38 antiserum with

10-7 M synthetic PACAP38 resulted in complete
loss of the immunoreaction (Figure 3E-F). On the
other hand, preincubation of the PACAP38 anti-
serum with 10-7 M synthetic PACAP27, VIP or
CRF did not affect the intensity of the immunos-
taining (Figure 4A-F).When the primary antiserum
was substituted with either nonimmune rabbit
serum or PBS, no immunofluorescence was
observed.

Discussion

The present study provides the first anatomical
description of PACAP containing elements in
peripheral and sensory organs of the zebrafish
Danio rerio during embryonal and larval develop-
ment.The antiserum used to identify PACAP-like ir
structures in the developing zebrafish was raised
against mammalian PACAP38. In fact, the primary
structure of PACAP38 is very similar in mammals
(Miyata et al., 1989) and zebrafish (Fradinger and
Sherwood, 2000). Preabsorption tests showed that
the PACAP antiserum specifically recognizes
PACAP38 and did not cross-react with synthetic
PACAP27, VIP or CRF. Previously, it was shown
that PACAP38 is the main molecular form occur-
ring in fish brain (Montero et al., 1998). However,
whether PACAP38 is also the predominant molec-
ular form in fish extraencephalic regions, remains
to be established. The antiserum employed in this
study has also been successfully used to localize
PACAP-like immunoreactivity in the zebrafish
brain (Mathieu et al., work in press), tadpole brain
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Figure 3. Immunofluorescence photographs showing the distribution of PACAP-like immunoreactivity in the sensory and peripheral organs
of Danio rerio at the hatching period (72 hpf stage) and larval period (day 5 and day 13). A: Coronal section showing PACAP-like
immunopositive cells (arrows) located in the dorsal epithelium of the developing pharyngeal arches (level 2c in Figure 1). Cc, cranial cav-
ity; Pha, pharyngeal arches. 72 hpf stage. Bouin-fixed tissue. B: Coronal section showing numerous bright fluorescent ir cells (arrows) in
the swim bladder (Sb). Dorsally to the swim bladder are present some ir cells located in the ventral epithelium of the developing pharyn-
geal arches (Pha). A higly fluorescent immunoreactivity is also present in numerous exocrine pancreas (Ep) progenitor cells located adja-
cent to the yolk (level 3c in Fig. 1). Y, yolk. 72 hpf stage. Bouin-fixed tissue. C: Coronal section showing bright fluorescent ir cells (arrows)
in the pancreas and liver (level 4d in Figure 1). G, gut; L, liver; Pa, pancreas. Day 5 stage. Paraformaldehyde-fixed tissue. D: Coronal sec-
tion showing two PACAP-like immunopositive cells (arrows) located in the gut (G; level 3e in Figure 1). Day 13 stage. Bouin-fixed tissue.
E: Sagittal section showing numerous moderate fluorescent ir fibers (heads of arrow) located in the smooth muscolar wall layer of the
intestine around the intestinal villus (Iv). Day 13 stage. Bouin-fixed tissue. F: Adjacent section of E showing that no immunoreaction is
present after preincubation of the primary antiserum with synthetic PACAP38. The heads of arrow show the not stained intestinal regions
that in E are labeled. Iv, intestinal villus. Day 13 stage. Bouin-fixed tissue. Scale bars: 200 µµm.
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Figure 4. Immunofluorescence photographs showing the specificity of PACAP-like immunoreactivity in the sensory (A-B, E-F) and periph-
eral organs (C-D) of Danio rerio at the pharyngula period (A-D) and larval period (E-F). A: Coronal section (level 1b in Figure 1), show-
ing PACAP-like immunopositive cells (arrows) located in the olfactory placode (Op) of 48 hpf old embryos. Did, dorsal diencephalon;
Telm, medial telencephalon. Bouin-fixed tissue. B: Adjacent section of A showing that no changes in the intensity of the immunoreac-
tion (arrows) are present after preincubation of the primary antiserum with 10-7 M synthetic PACAP27. Did, dorsal diencephalon; Op,
olfactory placode; Telm, medial telencephalon. Bouin-fixed tissue. C: Coronal section showing numerous bright stained positive cells
(arrows) located adjacent to the lumen (Lu) of the developing esophagus (level 2b in Figure 1). E, esophagus. 48 hpf stage. Bouin-fixed
tissue. D: Adjacent section of C showing that no changes in the intensity of the immunoreaction (arrows) are present after preincuba-
tion of the primary antiserum with 10-7 M synthetic PACAP27. E, esophagus; Lu, lumen of the developing esophagus. Bouin-fixed tis-
sue. E: Coronal section showing bright fluorescent ir cells (arrows) in the otic sensory epithelium (level 2d in Figure 1). Ph, pharynx.
Ose, otic sensory epithelium. Tb, trabeculae. Day 5 stage. Paraformaldehyde-fixed tissue. F: Adjacent section of E showing that no
changes in the intensity of the immunoreaction (arrows) are present after preincubation of the primary antiserum with 10-7 M synthet-
ic PACAP27. Ph, pharynx. Ose, otic sensory epithelium. Tb, trabeculae. Paraformaldehyde-fixed tissue. Scale bars: 200 µµm.



(Mathieu et al., 2001) as well as in the frog brain
and adrenal gland (Yon et al., 2001).

A few studies have been carried out on the
ontogeny of  PACAP-like immunoreactivity in fish.
A recent report (Krueckl et al., 2003) describes the
developmental changes in the PACAP expression in
zebrafish by RT-PCR and in situ hybridization.
However, the authors have focused their attention
on early developmental periods, from the blastula
to the pharyngula period.

This study shows that PACAP-like ir elements
appear at the pharyngula period in both sensory
and peripheral organs and that most of the positive
elements are transiently expressed. In particular, in
sensory organs, the presence of PACAP in the reti-
na and otic sensory epithelium is limited to the
embryonal and early larval periods whereas in the
olfactory placode PACAP ir material is present
only at pharyngula and hatching periods, suggesting
that the peptide could be implicated in the cellular
migration and/or differentiation at the level of these
sensory structures. The presence of PACAP
immunoreactivity in developing sensory organs of
fish has never been investigated. Krueckl and col-
laborators (2003) have described PACAP mRNA
expression in zebrafish retina from gastrula period
to pharyngula period. In addition, the presence of
other neuropeptides, such as the neuropeptide Y
(NPY) has been observed in the zebrafish develop-
ing retina (Mathieu et al., 2002). In humans, it was
previously shown that PACAP is synthesized in the
fetal retina, indicating that the PACAP may act on
retinal cells by stimulating PACAP type I receptors
coupled to cAMP formation (Olianas et al., 1997).
Also in rat, it has been shown that PACAP has neu-
roprotective effects in developing retina through
intracellular cAMP-dependent protein kinase path-
way (Silveira et al., 2002).

Our results showed that from 24 hpf stage
onward, PACAP-like immunoreactivity is present in
the cells forming the dorsal aorta, suggesting that
the peptide could be implicated in the control of
vasculogenesis. A number of studies have recently
examined the roles of several molecules in path-
ways that lead to the development of blood and ves-
sels in zebrafish, and have provided insights into the
regulation of these processes (Ahn et al., 2000;
Lawson et al., 2001; Childs et al., 2002; Crosier et
al., 2002; Szeto et al., 2002; Jang et al., 2003).
However, the correlation between PACAP expres-
sion and the generation of vascular patterns in

zebrafish is still unknown. In adult rat, it has been
shown that PACAP has an antiproliferative effect
on aortic smooth muscle cells through cAMP pro-
duction (Oiso et al., 1993). In addition, the impor-
tance of PACAP38 in vascular relaxation of adult
rabbit aorta has been demonstrated (Wilson and
Warren, 1993).

The occurrence of PACAP-like immunoreactivity
in the pharyngeal arches from 72 hpf stages
onward conforms with the finding of Krueckl and
coworkers (2003) who described the presence of
PACAP messenger expression in a region of the
pharyngeal arches from which, later in zebrafish
development, the jaw originates, suggesting a role
of the peptide in stimulating withdrawal from the
cell cycle prior to the differentiation and morho-
genesis of the jaw.

Our results showed the presence and different
temporal appearance of PACAP immunoreactivity
in several peripheral organs of the zebrafish gas-
trointestinal system. In particular, in the esophagus,
positive elements appeared from 48 hpf stage, in
the exocrine pancreas from 72 hpf stage, in the liver
from day 5 and in the gut only at day 13. To our
knowledge, there is no data concerning the ontoge-
ny of PACAP in either the gastrointestinal tract or
glands of fish. Previously, the presence of PACAP
immunoreactivity in the pancreas had been
observed in 18- and 20-week-old human fetuses
(Vincze et al., 2001). These authors as well
described the location of PACAP in the exocrine
portion of the gland, indicating a role of the peptide
in cell proliferation and differentiation of the
epithelial foregut structures during fetal develop-
ment. Recently, it has been demonstrated that rat
immature embryonic pancreatic cells are sensitive
to VIP and PACAP and express VPAC2 receptor
between embryonic days 12 and 16, suggesting that
these peptides are implicated in the control of sur-
vival and proliferation (Rachdi et al., 2003).

The physiological significance of PACAP expres-
sion in developing liver cells of zebrafish and other
species of fishes is unknown. However, it was shown
previously that PACAP induces expression of corti-
costeroid-binding globulin in cultured fetal rat
hepatocytes, acting through type II receptor iso-
forms, indicating that it could participate in the
regulation of gluconeogenesis (El Fahime et al.,
1996). In the adult rat liver, PACAP stimulates glu-
cose output from perfused tissue, although less
strongly than glucagon (Inagaki et al., 1994;
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Yokota et al., 1995). In addition, recent studies in
rat have demonstrated that targeted disruption of
the PACAP gene results in early postnatal death
associated with dysfunction of lipid and carbohy-
drate metabolism (Gray et al., 2001).

Our results showed the presence of PACAP-like
immunoreactivity in the gut epithelial cells and
intestinal fibers at late larval period of zebrafish
development, suggesting a correlation between
PACAP and the beginning of the digestive function.
Previously, PACAP ir cells were observed in the
growing end of the developing gastric and pyloric
glands of 18-week-old rat fetuses, suggesting a pro-
tective and proliferative role of the peptide in the
gastrointestinal mucosa (Vincze et al., 2001).
However, the involvement of PACAP in these prolif-
eration and differentiation processes remains to be
determined, although the protective role of several
bioactive polypeptides, among which gastrin, is well
known (Brown, 1993).
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