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Abstract 

The histochemical and ultrastructural analy-
sis of the nuclear components involved in RNA
transcription and splicing can reveal the occur-
rence of cellular dysfunctions eventually relat-
ed to the onset of a pathological phenotype. In
recent years, nuclear histochemistry at light
and electron microscopy has increasingly been
used to investigate the basic mechanisms of
skeletal muscle diseases; the in situ study of
nuclei of myofibres and satellite cells proved to
be crucial for understanding the pathogenesis
of skeletal muscle wasting in sarcopenia,
myotonic dystrophy and laminopathies.

In recent years, histochemistry has become
a popular approach to investigate the structur-
al organization and function of skeletal muscle
cells,1-8 being widely used as a diagnostic tool
in neuromuscular disorders.9,10 In particular,
the cytochemical analysis of the cell nucleus
has been applied more and more frequently for
investigating the basic mechanisms of skeletal
muscle diseases.

In the cell nucleus, genes are transcribed
and the primary transcripts undergo molecular
processing which generates mature RNAs to
be exported into the cytoplasm. The events
leading to the formation of mature RNAs are
chronologically and spatially ordered, and they
mostly occur on distinct ribonucleoprotein
(RNP)-containing structures.11,12 These nuclear
components have specific locations, and this is
a necessary prerequisite for the correct pro-
cessing of nuclear RNAs to occur, so that
whenever transcription and/or splicing are
altered, the organization, composition, and
intranuclear location of RNP-containing struc-
tures are also affected.13-16 As a consequence,
the in situ analysis of the nuclear organization
and molecular composition in muscle cells not
only provides information about the DNA/RNA
pathways which govern myofibre metabolism,
but also may reveal the occurrence of dysfunc-

tions related to the pathological phenotype of
diseased skeletal muscle.

Recently, ultrastructural immunocytochemi-
cal investigation of cell nuclear components
has been applied to study sarcopenia,17,18 i.e.
the age-related condition characterized by the
decline of muscle mass, strength and quality,
which is responsible for frailty, disability and
premature death in elderly.19 The cellular
mechanisms involved in the onset of sarcope-
nia are probably manifold, and they still
remain to be completely elucidated.20,21 One of
the possible causes is the remarkable decline
in the efficiency of muscle regeneration,
which has been associated with a decrease in
the number of satellite cells and/or with the
alteration of their proliferation and differenti-
ation potential.22,23 Consistent with this hypoth-
esis, through the in situ analysis of the nuclear
RNP-containing structures involved in the dif-
ferent steps of mRNA formation, it has recent-
ly been demonstrated that satellite cells of old
muscles exhibit a significantly reduced activi-
ty of pre-mRNA splicing and cleavage, which
hampers their responsiveness to muscle dam-
age.18 In addition, the cytochemical approach
allowed to demonstrate that the entire produc-
tion chain of mRNA, from its synthesis to the
export into the cytoplasm, is impaired in the
myonuclei of old muscles:17 this would likely
contribute to the reduced responsiveness of
muscle fibres to anabolic stimuli, as it typical-
ly occurs in elderly. It may be inferred that
many of the structural and functional alter-
ations occurring in old muscles could be the
phenotypic expression of a failure in nuclear
functions. Accordingly, when the sarcopenic
process is prevented by physical activity,24,25 the
cell nuclei of senescent skeletal muscles show
the RNP pattern typical of the adult age (per-
sonal unpublished results). It is worth noting
that in hibernating mammals the muscle mass
is maintained even after long periods of inac-
tivity (which may last for months, in some
species): in the skeletal muscles of hibernat-
ing mammals the nucleus displays “active”
characteristics,26 thus suggesting that preser-
vation of the myofibre/muscle structure
implies the maintenance of a correct nuclear
functionality.

Defects in the RNA maturation pathways
have also been related to diseases leading to
muscle dystrophy: in both the myotonic dystro-
phy type 1 (DM1) and type 2 (DM2) the expan-
sion of two distinct nucleotidic sequences
((CTG)n in the 3’ untranslated region of the
DMPK gene on chromosome 19q13 in DM127-29

and (CCTG)n in the first intron of the ZNF9
gene on chromosome 3q21 in DM230,31) causes
pathologies characterized by a variety of multi-
systemic features including myotonia (muscle
hyperexcitability), muscular dystrophy, dilated
cardiomyopathy, cardiac conduction defects,

cataracts, insulin-resistance, and disease-spe-
cific serological abnormalities such as hyper-
glycemia and gamma-glutamyltransferase ele-
vations, hypotestosteronism, and decreased
levels of IgG and IgM immunoglobulins.
Combining biomolecular and cytochemical
techniques, it has been demonstrated that the
basic mechanisms of both DMs reside in the
nuclear sequestration of the expanded RNAs:
CUG- and CCUG-containing transcripts accu-
mulate in intranuclear foci in DM1 and DM2
cells respectively, and alter the regulation and
intranuclear localization of the RNA-binding
proteins CUGBP1 and MBLN, which are neces-
sary for the physiological processing of pre-
mRNA.31-37 A recent study based on immunocy-
tochemical analyses at light and electron
microscopy38 has demonstrated that MBNL1-
containing foci in DM2 cells also sequester
snRNPs and hnRNPs, splicing factors involved
in the early phases of transcript processing;11

this strengthens the hypothesis that the multi-
factorial phenotype of dystrophic patients
could be due to a general alteration of the pre-
mRNA post-transcriptional pathway.

Laminopathies represent a family of multi-
systemic disorders resulting from mutations in
the LMNA gene on chromosome 1q21, encod-
ing nuclear lamins A and C. They include sev-
eral distinct disease phenotypes, many of
which characterised by skeletal muscle dystro-
phy.39 Also in this case, the combination of bio-
molecular and cytochemical studies revealed
that the basic mechanisms of the pathological
features reside in the nucleus, where pre-
lamin A is accumulated, heterochromatin
undergoes a severe disorganisation and many
heterochromatin-associated proteins show
altered properties.39-42 This defective hete-
rochromatin remodelling affects gene expres-
sion thus causing a cascade of epigenetic
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events altering several systems.
The analysis in situ of the cell nucleus may

therefore represent a decisive approach for
understanding the basic mechanisms leading
to fibre muscle loss/disorganization, which is
crucial for the development of effective inter-
ventions to fight physical disability. This type
of investigation requires that sufficient
amounts of bioptic material are adequately
removed and processed in order to obtain reli-
able results; however, this is scarcely compati-
ble with the surgical needs and, for a long
time, this restriction has limited the applica-
tion of in situ techniques to investigate muscle
physiopathology. The recent demonstration
that routinely frozen biopsies of human skele-
tal muscle can be successfully processed for
morphological and immunocytochemical stud-
ies at transmission electron microscopy43

opens promising perspectives for multiple
exploitation of the bioptic muscle samples
stored in tissue banks, especially for the study
of rare muscle diseases.
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