Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

  • S. Salucci University of Urbino Carlo Bo, Italy.
  • P. Ambrogini University of Urbino Carlo Bo, Italy.
  • D. Lattanzi University of Urbino Carlo Bo, Italy.
  • M. Betti University of Urbino Carlo Bo, Italy.
  • P. Gobbi University of Urbino Carlo Bo, Italy.
  • C. Galati University of Urbino Carlo Bo, Italy.
  • F. Galli University of Perugia, Italy.
  • R. Cuppini University of Urbino Carlo Bo, Italy.
  • A. Minelli | andrea.minelli@uniurb.it University of Urbino Carlo Bo, Italy.

Abstract

An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.
Published
2014-05-02
Info
Issue
Section
Original Papers
Supporting Agencies
University of Urbino Carlo Bo
Keywords:
Vitamin E, CA1 stratum radiatum, axo-spinous synapses, glia-synapse relationship, tripartite synapses, morphometry, electron microscopy.
Statistics
  • Abstract views: 1439

  • PDF: 432
  • HTML: 454
How to Cite
Salucci, S., Ambrogini, P., Lattanzi, D., Betti, M., Gobbi, P., Galati, C., Galli, F., Cuppini, R., & Minelli, A. (2014). Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring. European Journal of Histochemistry, 58(2). https://doi.org/10.4081/ejh.2014.2355