Immunoreactivities of AR, ERα, ERβ and aromatase in the nuptial pad of Chinese brown frog (Rana dybowskii) during pre-hibernation and the breeding period

Submitted: 26 November 2020
Accepted: 25 March 2021
Published: 13 April 2021
Abstract Views: 655
PDF: 425
HTML: 25
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

There is a prominent local raised pad called nuptial pad on the forelimb of Chinese brown frog (Rana dybowskii), which is hypothetically concluded as an enhancement of the grip and a spreader of pheromone during the amplexus. In this study, we investigated the immunolocalization and protein expression levels of AR, ERα, ERβ and aromatase in the nuptial pad of R. dybowskii during pre-hibernation and the breeding period. Histologically, the annual development of the nuptial pad in R. dybowskii is manifested as the larger area of specialized mucous gland and the longer length of papillary epidermal projection during the breeding period. AR, ERα, ERβ and aromatase are present in the stratum granulosum, stratum spinosum, stratum basale and the secretory portion of specialized mucous glands during both periods. Western blotting results confirmed that AR, ERα and ERβ protein levels are higher during pre-hibernation than those during the breeding season. These results suggest that nuptial pad is the direct target organ of androgen and estrogen. Androgen may participate in the regulation of annual development and glandular function of nuptial pad, and estrogen may play an endocrine, autocrine or paracrine role during pre-hibernation and the breeding period.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Noble, Kingsley G. The biology of the Amphibia. New York: McGraw-Hill; 1931. DOI: https://doi.org/10.5962/bhl.title.82448
Luna M, McDiarmid R, Faivovich J. From erotic excrescences to pheromone shots: structure and diversity of nuptial pads in anurans. Biol J Linn Soc Lond 2018;124:403-46. DOI: https://doi.org/10.1093/biolinnean/bly048
Brizzi R, Delfino G, Pellegrini R. Specialized mucous glands and their possible adaptive role in the males of some species of rana (amphibia, anura). J Morphol 2002;254:328-41. DOI: https://doi.org/10.1002/jmor.10039
Willaert B, Bossuyt F, Janssenswillen S, Adriaens D, Baggerman G, Matthijs S, et al. Frog nuptial pads secrete mating season-specific proteins related to salamander pheromones. J Exp Biol 2013;216:4139-43. DOI: https://doi.org/10.1242/jeb.086363
Blackburn DG, Lynch LC. Effects of testosterone administration and gonadectomy on nuptial pad morphology in overwintering male leopard frogs, Rana pipiens. Amphib-reptil 1995;16:113-21. DOI: https://doi.org/10.1163/156853895X00299
Sever DM, Staub NL. Hormones, sex accessory structures, and secondary sexual characteristics in amphibians. In: Norris DO, Lopez KH, editors. Hormones and reproduction of vertebrates. London: Academic Press; 2011. p. 83-98. DOI: https://doi.org/10.1016/B978-0-12-374932-1.00018-4
Woodley S. Chemosignals, hormones, and amphibian reproduction. Horm Behav 2015;68:3-13. DOI: https://doi.org/10.1016/j.yhbeh.2014.06.008
Schiffer L, Arlt W, Storbeck K-H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol 2018;465:4-26. DOI: https://doi.org/10.1016/j.mce.2017.08.016
Scaia MF, Volonteri MC, Czuchlej SC, Ceballos NR. Estradiol and reproduction in the South American toad Rhinella arenarum (Amphibian, Anura). Gen Comp Endocrinol 2019;273:20-31. DOI: https://doi.org/10.1016/j.ygcen.2018.03.018
Woodley SK. Plasma Androgen levels, spermatogenesis, and secondary sexual characteristics in two species of plethodontid salamanders with dissociated reproductive patterns. Gen Comp Endocrinol 1994;96:206-14. DOI: https://doi.org/10.1006/gcen.1994.1175
Yamamoto K, Toyoda F, Tanaka S, Hayashi H, Kikuyama S. Radioimmunoassay of a newt sex pheromone, sodefrin, and the influence of hormones on its level in the abdominal gland. Gen Comp Endocrinol 1996;104:356-63. DOI: https://doi.org/10.1006/gcen.1996.0181
Toyoda F, Yamamoto K, Iwata T, Hasunuma I, Cardinali M, Mosconi G, et al. Peptide pheromones in newts. Peptides 2004;25:1531-6. DOI: https://doi.org/10.1016/j.peptides.2003.10.025
Schubert SN, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK. Effects of androgens on behavioral and vomeronasal responses to chemosensory cues in male terrestrial salamanders (Plethodon shermani). Horm Behav 2006;50:469-76. DOI: https://doi.org/10.1016/j.yhbeh.2006.06.014
Benner SL, Woodley SK. The reproductive pattern of male dusky salamanders (genus Desmognathus) is neither associated nor dissociated. Horm Behav 2007;51:542-7. DOI: https://doi.org/10.1016/j.yhbeh.2007.02.004
Scaia MF, Regueira E, Sassone AG, Volonteri MC, Ceballos NR. The Bidder's organ of the toad Rhinella arenarum (Amphibia, Anura). Presence of steroidogenic enzymes. J Exp Zool A Ecol Genet Physiol 2011;315A:439-46. DOI: https://doi.org/10.1002/jez.691
Iwabuchi J, Koshimizu K, Nakagawa T. Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue. Gen Comp Endocrinol 2013;194:286-94. DOI: https://doi.org/10.1016/j.ygcen.2013.09.024
Weng J, Liu Y, Xu Y, Hu R, Zhang H, Sheng X, et al. Expression of P450arom and estrogen receptor alpha in the oviduct of Chinese brown frog (Rana dybowskii) during prehibernation. Int J Endocrinol 2015;2015:283085. DOI: https://doi.org/10.1155/2015/283085
Zhao E, Adler K. Herpetology of China. Oxford: Society for the Study of Amphibians & Reptiles; 1993.
Yang C, Zhang Y-H, Cui H-T. Correlation between the changes of microstructure and testosterone in nuptial pad of the frog Rana chensinensis. Zool Res 2005;26:638-44.
Savage RM. The ecology and life history of the common frog. London: Pitman; 1961. DOI: https://doi.org/10.5962/bhl.title.6538
Duellman WE, Trueb L. Biology of Amphibians. New York: McGraw Hill; 1986. DOI: https://doi.org/10.2307/1445022
Kao Y-H, Alexander PS, Yanq VVC, Yu JY-L. Annual patterns of nuptial pad and vocal sac development in the male Chinese bullfrog ("Rana Rugulosa" Wiegmann). Zool Stud 1994;33:153-9.
Kaptan E, Murathanoğlu O. Annual morphological cycles of testis and thumb pad of the male frog (Rana ridibunda). Anat Rec (Hoboken) 2008;291:1106-14. DOI: https://doi.org/10.1002/ar.20723
Luna M, Taboada C, Baêta D, Faivovich J. Structural diversity of nuptial pads in Phyllomedusinae (Amphibia: Anura: Hylidae). J Morphol 2012;273:712-24. DOI: https://doi.org/10.1002/jmor.20016
Epstein MS, Blackburn DG. Histology and histochemistry of androgen-stimulated nuptial pads in the leopard frog, Rana pipiens, with notes on nuptial gland evolution. Can J Zool 1997;75:472-7. DOI: https://doi.org/10.1139/z97-057
Moore FL, Boyd SK, Kelley DB. Historical perspective: Hormonal regulation of behaviors in amphibians. Horm Behav 2005;48:373-83. DOI: https://doi.org/10.1016/j.yhbeh.2005.05.011
Harvey LA, Propper CR. Effects of androgens on male sexual behavior and secondary sex characters in the explosively breeding spadefoot toad, Scaphiopus couchii. Horm Behav 1997;31:89-96. DOI: https://doi.org/10.1006/hbeh.1997.1354
Orton F, Svanholm S, Jansson E, Carlsson Y, Eriksson A, Uren Webster T, et al. A laboratory investigation into features of morphology and physiology for their potential to predict reproductive success in male frogs. PLoS One 2020;15:e0241625. DOI: https://doi.org/10.1371/journal.pone.0241625
Fasano S, Minucci S, Di Matteo L, D'Antonio M, Pierantoni R. Intratesticular feedback mechanisms in the regulation of steroid profiles in the frog, Rana esculenta. Gen Comp Endocrinol 1989;75:335-42. DOI: https://doi.org/10.1016/0016-6480(89)90167-6
Delgado MJ, Alonso-Gómez AL, Alonso-Bedate M. Role of environmental temperature and photoperiod in regulation of seasonal testicular activity in the frog, Rana perezi. Can J Physiol Pharmacol 1992;70:1348-52. DOI: https://doi.org/10.1139/y92-189
Santen RJ, Simpson E. History of estrogen: Its purification, structure, synthesis, biologic actions, and clinical implications. Endocrinology 2019;160:605-25. DOI: https://doi.org/10.1210/en.2018-00529
Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol 2001;45:S116-24. DOI: https://doi.org/10.1067/mjd.2001.117432
Guerriero G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann N Y Acad Sci 2009;1163:154-68. DOI: https://doi.org/10.1111/j.1749-6632.2009.04460.x
Fasano S, D'Antonio M, Pierantoni R. Sites of action of local estradiol feedback mechanism in the frog (Rana esculenta) testis. Gen Comp Endocrinol 1991;81:492-9. DOI: https://doi.org/10.1016/0016-6480(91)90177-8
Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne) 2018;9:763. DOI: https://doi.org/10.3389/fendo.2018.00763
Zhang W, Guo Y, Li J, Huang L, Kazitsa EG, Wu H. Transcriptome analysis reveals the genetic basis underlying the seasonal development of keratinized nuptial spines in Leptobrachium boringii. BMC Genomics 2016;17:978. DOI: https://doi.org/10.1186/s12864-016-3295-9
Guerriero G, Roselli CE, Paolucci M, Botte V, Ciarcia G. Estrogen receptors and aromatase activity in the hypothalamus of the female frog, Rana esculenta. Fluctuations throughout the reproductive cycle. Brain Res 2000;880:92-101. DOI: https://doi.org/10.1016/S0006-8993(00)02798-0

How to Cite

Tang, Z., Chen, Y., Ren, B., Wang, X., Zhang, H., Han, Y., Yuan, Z., & Weng, Q. (2021). Immunoreactivities of AR, ERα, ERβ and aromatase in the nuptial pad of Chinese brown frog (<em>Rana dybowskii</em>) during pre-hibernation and the breeding period. European Journal of Histochemistry, 65(2). https://doi.org/10.4081/ejh.2021.3206