Dipeptidylpeptidase-­IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

  • E. Tarantola University of Pavia, Italy.
  • V. Bertone University of Pavia, Italy.
  • G. Milanesi University of Pavia, Italy.
  • E. Capelli University of Pavia, Italy.
  • A. Ferrigno University of Pavia, Italy.
  • D. Neri University of Padua, Italy.
  • M. Vairetti University of Pavia, Italy.
  • S. Barni University of Pavia, Italy.
  • I. Freitas | freitas@unipv.it University of Pavia, Italy.

Abstract

Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille’s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.

Downloads

Download data is not yet available.

Author Biographies

E. Tarantola, University of Pavia
Department of Biology and Biotechnology "Lazzaro Spallanzani"
V. Bertone, University of Pavia
Department of Biology and Biotechnology "Lazzaro Spallanzani"
G. Milanesi, University of Pavia
Department of Biology and Biotechnology "Lazzaro Spallanzani"
E. Capelli, University of Pavia
Department of Sciences and Technologies for the Environment
A. Ferrigno, University of Pavia
Department of Internal Medicine and Therapeutics
D. Neri, University of Padua
Surgical and Gastroenterological Department, Hepatobiliary Surgery and Liver Transplant Unit
M. Vairetti, University of Pavia
Department of Internal Medicine and Therapeutics
S. Barni, University of Pavia
Department of Biology and Biotechnology "Lazzaro Spallanzani"
I. Freitas, University of Pavia
Department of Biology and Biotechnology "Lazzaro Spallanzani" and Institute of Molecular Genetics of CNR, Histochemistry and Cytometry Section, Pavia.
Published
2012-10-08
Section
Original Papers
Supporting Agencies
MIUR-PRIN (Ministero dell’Università e Ricerca, Progetti di Rilevante Interesse Nazionale) 2004 and 2006 and by F.A.R. (Fondi di Ateneo per la Ricerca), University of Pavia.
Keywords:
Dipeptidylpeptidase-IV, fatty liver, incretins, neuropeptides, biliary tree, bile canaliculi, hepatocytes.
Statistics
Abstract views: 555

PDF: 219
HTML: 1073
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Tarantola, E., Bertone, V., Milanesi, G., Capelli, E., Ferrigno, A., Neri, D., Vairetti, M., Barni, S., & Freitas, I. (2012). Dipeptidylpeptidase-­IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. European Journal of Histochemistry, 56(4), e41. https://doi.org/10.4081/ejh.2012.e41