European Journal of Histochemistry https://www.ejh.it/index.php/ejh <p>The <strong>European Journal of Histochemistry&nbsp;</strong>has been an influential cytology journal for over 60 years, publishing research articles on functional cytology and histology in animals and plants. The&nbsp;<strong>European Journal of Histochemistry&nbsp;</strong>offers original research articles investigating on structural and molecular components performed by histochemical and immunohistochemical methods, at light and electron microscopy, cytometry and imaging techniques.</p> <p>Areas of particular interest include cell differentiation, senescence and death, and cell-cell interactions in normal and pathological tissues; attention is also given to articles on newly developed or originally applied histochemical and microscopical techniques.</p> <p>Since its foundation in 1954,&nbsp;the <strong>European Journal of Histochemistry&nbsp;</strong>is the official organ of the Italian Society of Histochemistry.</p> PAGEPress Scientific Publications, Pavia, Italy en-US European Journal of Histochemistry 1121-760X <p><strong>PAGEPress</strong> has chosen to apply the&nbsp;<a href="http://creativecommons.org/licenses/by-nc/4.0/" target="_blank" rel="noopener"><strong>Creative Commons Attribution NonCommercial 4.0 International License</strong></a>&nbsp;(CC BY-NC 4.0) to all manuscripts to be published.<br><br>An Open Access Publication is one that meets the following two conditions:</p> <ol> <li class="show">the author(s) and copyright holder(s) grant(s) to all users a free, irrevocable, worldwide, perpetual right of access to, and a license to copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship, as well as the right to make small numbers of printed copies for their personal use.</li> <li class="show">a complete version of the work and all supplemental materials, including a copy of the permission as stated above, in a suitable standard electronic format is deposited immediately upon initial publication in at least one online repository that is supported by an academic institution, scholarly society, government agency, or other well-established organization that seeks to enable open access, unrestricted distribution, interoperability, and long-term archiving.</li> </ol> <p>Authors who publish with this journal agree to the following terms:</p> <ol> <li class="show">Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.</li> <li class="show">Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.</li> <li class="show">Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.</li> </ol> Effect of carboplatin injection on Bcl-2 protein expression and apoptosis induction in Raji cells https://www.ejh.it/index.php/ejh/article/view/3134 <p>To investigate the effects of carboplatin (CBP) injection on apoptosis induction in the human lymphoma cell line Raji and to explore the underlying mechanism, Raji cells were randomly divided into two treatment groups. Cells in the experimental groups were treated with 15 μM CBP injection, those in the control groups were treated with solvent, and both groups were treated for 24, 48 and 72 h. Cells from each group were collected for subsequent assays. For each group, the relative expression of B-cell lymphoma-2 (Bcl-2) was determined by Western blot (WB), the expression pattern of Bcl-2 was observed by immunocytochemistry (ICC), and cell apoptosis was observed after Hoechst 33342 staining. Real-time PCR detection of the relative expression levels of the Bax and caspase-3 genes in each group of cells were performed. The WB results showed that the relative expression of the Bcl-2 protein significantly decreased 48 and 72 h after treatment in the CBP groups compared with the control groups (P&lt;0.001), and a significant decrease in the expression of this protein was also noted at 48 h <em>vs</em> 24 h, 72 h <em>vs</em> 48 h, and 72 h <em>vs</em> 24 h with extremely significant differences (P&lt;0.001). Moreover, the expression of the Bcl-2 protein decreased as the duration of CBP treatment increased, showing a time-dependent manner. The ICC results were consistent with the WB findings. The expression of the Bcl-2 protein in the CBP treatment group was significantly reduced 48 h and 72 h after treatment compared with the control group (P&lt;0.001). A time-dependent manner was also noted in the expression of this protein, <em>i.e.</em>, the expression level decreased gradually at 24, 48, and 72 h after treatment with statistically significant differences (P&lt;0.001). Hoechst 33342 staining showed that the apoptosis rates at the three time points in the treatment groups were significantly higher than those in the control groups (P&lt;0.001), and a time-effect relationship was observed. The apoptosis rate increased over time with a significant difference (P&lt;0.05). The PCR results showed that the Bax and caspase-3 gene expression trend was the same but opposite that of Bcl-2. After treatment for 24 h and 48 h, the gene expression of the medication groups decreased with a very significant difference (P&lt;0.001), and with prolonged action time, the relative expression of the genes in the medication groups showed an upward trend. Comparing 48 h with 72 h and 24 h with 72 h, the gene expression levels also increased, reaching a very significant difference (P&lt;0.001), and there was a certain time dependence. CBP injection significantly reduced the expression of the Bcl-2 protein and induced apoptosis of Raji cells in a time-dependent manner. Moreover, CBP injection can increase the expression levels of the Bax and caspase-3 genes.</p> Peng Lin Boliang Zhou Haiying Yao Ya-ping Guo Copyright (c) 2020 The Author(s) http://creativecommons.org/licenses/by-nc/4.0 2020-07-09 2020-07-09 64 3 10.4081/ejh.2020.3134 Combined lectin- and immuno-histochemistry (CLIH) for applications in cell biology and cancer diagnosis: Analysis of human urothelial carcinomas https://www.ejh.it/index.php/ejh/article/view/3141 <p>Lectin histochemistry (LHC) and immunohistochemistry (IHC), which demonstrate the composition and localisation of sugar residues and proteins in cell membranes, respectively, are generally used separately. Using these two methods, we previously demonstrated that malignant transformation of urothelial cells results in the alterations of protein glycosylation and reduced expression of urothelium-specific integral membrane proteins uroplakins (UPs). However, the correlation between these changes was not studied yet. To evaluate this correlation, we developed innovative method, which we named combined lectin- and immuno- histochemistry (CLIH). We used human biopsies of 6 normal urothelia and 9 papillary urothelial carcinomas, <em>i.e</em>. 3 papillary urothelial neoplasms of low malignant potential (PUNLMP), 3 non-invasive papillary urothelial carcinomas of low grade (pTa, l.g.), and 3 invasive papillary urothelial carcinomas of high grade (pT1, h.g.). We tested five different protocols (numbered 1-5) of CLIH on paraffin and cryo-semithin sections and compared them with LHC and IHC performed separately. Additionally, we carried out western and lectin blotting with antibodies against UPs and lectins <em>Amaranthus caudatus</em> agglutinin (ACA), <em>Datura stramonium </em>agglutinin (DSA), and jacalin, respectively. We showed that incubation with primary antibodies first, followed by the mixture of secondary antibodies and lectins is the most efficient CLIH method (protocol number 5). Additionally, 300 nm thick cryo-semithin sections enabled better resolution of co-localisation between sugar residues and proteins than 5 µm thick paraffin sections. In the normal urothelium, CLIH showed co-localisation of lectins ACA and jacalin with UPs in the apical plasma membrane (PM) of superficial umbrella cells. In papillary urothelial carcinomas, all three lectins (ACA, DSA and jacalin) labelled regions of apical PM, where they occasionally co-localised with UPs. Western and lectin blotting confirmed the differences between normal urothelium and papillary urothelial carcinomas. Our results show that CLIH, when used with various sets of lectins and antigens, is a useful, quick, and reliable method that could be applied for basic cell biology research as well as detailed subtyping of human urothelial carcinomas.</p> Daša Zupančič Mateja Erdani Kreft Igor Sterle Rok Romih Copyright (c) 2020 The Author(s) http://creativecommons.org/licenses/by-nc/4.0 2020-07-01 2020-07-01 64 3 10.4081/ejh.2020.3141 The synovial surface of the articular cartilage https://www.ejh.it/index.php/ejh/article/view/3146 <p>The articular cartilage has been the subject of a huge amount of research carried out with a wide array of different techniques. Most of the existing morphological and ultrastructural data on the this tissue, however, were obtained either by light microscopy or by transmission electron microscopy. Both techniques rely on thin sections and neither allows a direct, face-on visualization of the free cartilage surface (synovial surface), which is the only portion subject to frictional as well as compressive forces. In the present research, high resolution visualization by scanning electron microscopy and by atomic force microscopy revealed that the collagen fibrils of the articular surface are exclusively represented by thin, uniform, parallel fibrils evocative of the heterotypic type IX-type II fibrils reported by other authors, immersed in an abundant matrix of glycoconjugates, in part regularly arranged in phase with the D-period of collagen. Electrophoresis of fluorophore-labeled saccharides confirmed that the superficial and the deeper layers are quite different in their glycoconjugate content as well, the deeper ones containing more sulfated, more acidic small proteoglycans bound to thicker, more heterogenous collagen fibrils. The differences found between the synovial surface and the deeper layers are consistent with the different mechanical stresses they must withstand.</p> Petra Rita Basso Elena Carava' Marina Protasoni Marcella Reguzzoni Mario Raspanti Copyright (c) 2020 The Author(s) http://creativecommons.org/licenses/by-nc/4.0 2020-07-01 2020-07-01 64 3 10.4081/ejh.2020.3146 Dark-field microscopy enhance visibility of CD31 endothelial staining https://www.ejh.it/index.php/ejh/article/view/3133 <p>A simple dark field microscopy technique was used for visualization of blood vessels in normal human renal tissues and carcinoma. Phase contrast condenser ring apt for high power objectives was combined with a 10x objective in order to create a dark field illumination of the specimens examined. The endothelial lining of the vessels had been stained by using CD31 monoclonal antibodies combined with conventional peroxidase immunohistochemistry. The final DAB addition used for this technique induced an intense light scatter in the dark field microscope. This scattered light originating from the endothelial lining made the walls of the bright vessels easily detectable from the dark background.</p> Eva Jennische Stefan Lange Ragnar Hultborn Copyright (c) 2020 The Author(s) http://creativecommons.org/licenses/by-nc/4.0 2020-07-01 2020-07-01 64 3 10.4081/ejh.2020.3133 Imaging techniques in nanomedical research https://www.ejh.it/index.php/ejh/article/view/3151 <p>About twenty years ago, nanotechnology began to be applied to biomedical issues giving rise to the research field called nanomedicine. Thus, the study of the interactions between nanomaterials and the biological environment became of primary importance in order to design safe and effective nanoconstructs suitable for diagnostic and/or therapeutic purposes. Consequently, imaging techniques have increasingly been used in the production, characterisation and preclinical/clinical application of nanomedical tools. This work aims at making an overview of the microscopy and imaging techniques <em>in vivo</em> and <em>in vitro</em> in their application to nanomedical investigation, and to stress their contribution to this developing research field.</p> Laura Calderan Manuela Malatesta Copyright (c) 2020 The Author(s) http://creativecommons.org/licenses/by-nc/4.0 2020-07-01 2020-07-01 64 3 10.4081/ejh.2020.3151