Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry

Submitted: 14 March 2022
Accepted: 7 April 2022
Published: 20 April 2022
Abstract Views: 729
PDF: 666
HTML: 17
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Since the discovery of DNA structure in 1953, the deoxyribonucleic acid has always been playing a central role in biological research. As physical and ordered nucleotides sequence, it stands at the base of genes existence. Furthermore, beside this 2-dimensional sequence, DNA is characterized by a 3D structural and functional organization, which is of interest for the scientific community due to multiple levels of expression regulation, of interaction with other biomolecules, and much more. Analogously, the nucleic acid counterpart of DNA, RNA, represents a central issue in research, because of its fundamental role in gene expression and regulation, and for the DNA-RNA interplay. Because of their importance, DNA and RNA have always been mentioned and studied in several publications, and the European Journal of Histochemistry is no exception. Here, we review and discuss the papers published in the last 60 years of this Journal, focusing on its contribution in deepening the knowledge about this topic and analysing papers that reflect the interest this Journal always granted to the world of DNA and RNA.



PlumX Metrics


Download data is not yet available.


Biggiogera M. Thinking about the nucleus. Eur J Histochem 2003;47:91-2. DOI: https://doi.org/10.4081/812
Cremer T, Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 2006;50:223-72.
Nicolini CA. Chromatin: a multidisciplinary approach to its native structure. Basic Appl Histochem 1981;25:319-22.
Manfredi Romanini MG. New approaches to the "in situ" study of chromatin: introduction. Basic Appl Histochem 1981;25:285-7.
Manfredi Romanini MG. The contributions of cytochemistry to the study of the nucleus. Basic Appl Histochem 1985;29:177-80.
van der Ploeg M. Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 2000;44:7-42.
Pellicciari C. Histochemistry as a versatile research toolkit in biological research, not only an applied discipline in pathology. Eur J Histochem 2018;62:3006. DOI: https://doi.org/10.4081/ejh.2018.3006
Pellicciari C, Malatesta M. Identifying pathological biomarkers: histochemistry still ranks high in the omics era. Eur J Histochem 2011;55:e42. DOI: https://doi.org/10.4081/ejh.2011.e42
Malatesta M, Perdoni F, Muller S, Zancanaro C, Pellicciari C. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing. Eur J Histochem 2009;53:e12. DOI: https://doi.org/10.4081/ejh.2009.e12
Fraschini A, Biggiogera M. Ultrastructural analysis of mouse sperm chromatin. Basic Appl Histochem 1985;29:231-44.
Biggiogera M. Unusual ultrastructural features of chromatin in mouse sperm cells after DNA staining with osmium ammines. Basic Appl Histochem 1986;30:501-4.
Derenzini M, Olins AL, Olins DE. Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 2014;58:2307. DOI: https://doi.org/10.4081/ejh.2014.2307
Fakan S. Ultrastructural cytochemical analyses of nuclear functional architecture. Eur J Histochem 2004;48:5-14.
Trentani A, Testillano PS, Risueño MC, Biggiogera M. Visualization of transcription sites at the electron microscope. Eur J Histochem 2003;47:195-200. DOI: https://doi.org/10.4081/827
Cremer M, Zinner R, Stein S, Albiez H, Wagler B, Cremer C, et al. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei. Eur J Histochem 2004;48:15-28.
Cremer T, Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 2006;50:161-76.
Chiarelli B. [Possible model of suprachromosomal organization in the nucleus of eukaryotes].[Article in Italian]. Riv Istochim Norm Patol 1975;19:123.
Ardito G, Chiarelli B. [Interpretazione del meccanismo di bandeggiamento dei cromosomi].[Article in Italian]. Riv Istochim Norm Patol 1975;19:119.
Marchi A, Mezzanotte R, Ferrucci L. Identification of chromosome markers in interphase nuclei. Basic Appl Histochem 1981;25:105-11.
Sumner AT. Functional aspects of the longitudinal differentiation of chromosomes. Eur J Histochem 1994;38:91-109.
Nieddu M, Pichiri G, Diaz G, Mezzanotte R. The organization of classical satellite DNAs in human chromosomes: an approach using AluI and TaqI restriction endonucleases. Eur J Histochem 2003;47:209-14. DOI: https://doi.org/10.4081/829
Gosálvez J, Crespo F, Vega-Pla JL, López-Fernández C, Cortés-Gutiérrez EI, Devila-Rodriguez MI, et al. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization. Eur J Histochem 2010;54:e2. DOI: https://doi.org/10.4081/ejh.2010.e2
Dávila-Rodríguez MI, Cortés Gutiérrez EI, Cerda Flores RM, Pita M, Fernández JL, López-Fernández C, et al. Constitutive heterochromatin polymorphisms in human chromosomes identified by whole comparative genomic hybridization. Eur J Histochem 2011;55:e28. DOI: https://doi.org/10.4081/ejh.2011.e28
Novelli A. [Dimostrazione dell’acido deossiribonucleico con Sambucianina cloridrica].[Article in Italian]. Riv Istochim Norm Patol 1954;1:247-9.
Levi AC. [Acidi nucleici e strutture ergastoplasmatiche in parotidi iperattive di Epimys norvegicus (var. albina) Erxl].[Article in Italian]. Riv Istochim Norm Patol 1955;1:317-32.
Feulgen R, Rossenbeck, H. [Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsaure und die darauf beruhende elective Farbung vom Zelikernen in mikroskopischen Praparaten].[Article in German]. Zts Phys Chem 1924;135:203-48. DOI: https://doi.org/10.1515/bchm2.1924.135.5-6.203
Manfredi Romanini G, De Stefano GF. The Feulgen-DNA content in human individual metaphasic chromosomes. Riv Istochim Norm Patol 1974;18:29-36.
Porcelli F. [Ricerche sui limiti di quantitatività della reazione di Feulgen. V. Studio dell’idrolisi nei riguardi del dosaggio del DNA e della massa secca].[Article in Italian]. Riv Istochim Norm Patol 1971;17:397-404.
Bernocchi G, De Stefano GF. [Analysis of the kinetics of hydrolysis of the Feulgen reaction in cells with different euchromatin and heterochromatin ratios (proceedings)].[Article in Italian]. Riv Istochim Norm Patol 1976;20:120-1.
Cogliati R, Gautier A. [Demonstration of DNA and polysaccharides using a new “Schiff type” reagent].[Article in French]. CR Acad Sci Hebd Seances Acad Sci D 1973;276:3041-4.
Olins AL, Moyer BA, Kim SH, Allison DP. Synthesis of a more stable osmium ammine electron-dense DNA stain. J Histochem Cytochem 1989;37:395-8. DOI: https://doi.org/10.1177/37.3.2465337
Vázquez-Nin GH, Biggiogera M, Echeverría OM. Activation of osmium ammine by SO2-generating chemicals for EM Feulgen-type staining of DNA. Eur J Histochem 1995;39:101-6.
Marinozzi V, Derenzini M. [Colorazione preferenziale del DNA con acido fosfotungstico a pH 7].[Article in Italian]. Riv Istochim Norm Patol 1975;19:128.
Fukuda M, Noriki S, Imamura Y, Miyoshi N, Kimura S, Koizumi K, et al. Differential immunohistochemical staining of cancerous cells with anti-single-stranded DNA antiserum in ordinary pathological paraffin section after DNA-denaturation by acid hydrolysis. Eur J Histochem 1993;37:309-19.
Nitta Y, Suzuki K, Kohli Y, Fujiki N, Imamura Y, Noriki S, et al. Early progression stage of malignancy of human colon border-line adenoma as revealed by immunohistochemical demonstration of increased DNA-instability. Eur J Histochem 1993;37:207-18.
Otaki T, Kohli Y, Fujiki N, Imamura Y, Fukuda M. Early progression stage of malignancy as revealed by immunohistochemical demonstration of DNA instability; I, Human gastric adenomas. Eur J Histochem 1994;38:281-90.
Tsuzuki H, Saito H, Imamura Y, Noriki S, Fukuda M. Early progression stage of malignancy as revealed by immunohistochemical demonstration of DNA instability; II, Otorhinolaryngeal border-line neoplastic lesions. Eur J Histochem 1994;38:291-302.
Khaled A, Imamura Y, Noriki S, Fukuda M. Early progression stage of malignancy of uterine cervical dysplasia as revealed by immunohistochemical demonstration of increased DNA-instability. Eur J Histochem 2000;44:143-56.
Hirai K, Kumakiri M, Ueda K, Imamura Y, Noriki S, Nishi Y, et al. Clonal evolution and progression of 20-methylcholanthrene-induced squamous cell carcinoma of mouse epidermis as revealed by DNA instability and other malignancy markers. Eur J Histochem 2001;45:319-32. DOI: https://doi.org/10.4081/1641
Iwasa M, Imamura Y, Noriki S, Nishi Y, Kato H, Fukuda M. Immunohistochemical detection of early-stage carcinogenesis of oral leukoplakia by increased DNA-instability and various malignancy markers. Eur J Histochem 2001;45:333-46. DOI: https://doi.org/10.4081/1642
Sun A, Noriki S, Imamura Y, Fukuda M. Detection of cancer clones in human gastric adenoma by increased DNA-instability and other biomarkers. Eur J Histochem 2003;47:111-22. DOI: https://doi.org/10.4081/815
Fukuda M, Sun A. The DNA-instability test as a specific marker of malignancy and its application to detect cancer clones in borderline malignancy. Eur J Histochem 2005;49:11-26. DOI: https://doi.org/10.4081/922
Hirose M, Sun A, Okubo T, Noriki S, Imamura Y, Fukuda M. Detection of non-papillary, non-invasive transitional cell G1 carcinoma as revealed by increased DNA instability and other cancer markers. Eur J Histochem 2005;49:199-209.
Jin Y, Sun A, Noriki S, Imamura Y, Fukuda M. Detection of cancer clones in human colorectal adenoma as revealed by increased DNA instability and other bio-markers. Eur J Histochem 2007;51:1-10.
Hercher M, Mueller W, Shapiro HM. Detection and discrimination of individual viruses by flow cytometry. J Histochem Cytochem 1979;27:350-2. DOI: https://doi.org/10.1177/27.1.374599
Prenna G, Bottiroli G, Mazzini G, Andreoni A, Cova S, Sacchi CA. [Cytofluorometric determination of some hydrolases by using fluorogenic substrates].[Article in Italian]. Riv Istochim Norm Patol 1975;19:172-3.
De Vita R, Calugi A, Eleuteri P, Maggi O, Nassuato C, Vecchione A. Flow cytometric nuclear DNA content of fresh and paraffin-embedded tissues of breast carcinomas and fibroadenomas. Eur J Basic Appl Histochem 1991;35:233-44.
Crissman HA, Steinkamp JA. Cell cycle-related changes in chromatin structure detected by flow cytometryusing multiple DNA fluorochromes. Eur J Histochem 1993;37:129-38.
Dávila-Rodríguez MI, Cortés-Gutiérrez EI, Hernández-Valdés R, Guzmán-Cortés K, De León-Cantú RE, Cerda-Flores RM, et al. DNA damage in acute myeloid leukemia patients of Northern Mexico. Eur J Histochem 2017;61:2851. DOI: https://doi.org/10.4081/ejh.2017.2851
Capitani S, Muchmore JH, Maraldi NM, Palka C, Manzoli FA. [Nucleohistone-lipid interaction (DNA-F2b-histone-phospholipids)].[Article in Italian]. Riv Istochim Norm Patol. 1976;20:124.
Eufemi M, Ferraro A, Altieri F, Spoto G, Turano C. Non-histone proteins in transcriptionally active chromatin. Basic Appl Histochem 1987;31:239-46.
Brodsky VYa, Sarkisov DS, Arefyeva AM, Panova NW. DNA and protein relations in cardiomyocytes. Growth reserve in cardiac muscle. Eur J Histochem 1993;37:199-206.
Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Merlini L, Mattioli E, et al. Nuclear envelope proteins and chromatin arrangement: a pathogenic mechanism for laminopathies. Eur J Histochem 2006;50:1-8.
Gahan PB. DNA turnover in nuclei of cells from higher plants [proceedings]. Riv Istochim Norm Patol 1976;20:108-9.
Brodsky WY, Marshak TL, Mikeladze ZA, Moskovkin GN, Sadykova MK. DNA synthesis in the Purkinje neurons. Basic Appl Histochem 1984;28:187-94.
McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 1993;37:109-28.
Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Fernández JL, López-Fernández C, Gosálvez J. DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) in buccal cells. Eur J Histochem 2012;56:e49. DOI: https://doi.org/10.4081/ejh.2012.e49
Cortés-Gutiérrez EI, Dàvila-Rodrìguez MI, Fernandez JL, Lopez-Fernandez C, Gosalvez J, Koilocytes are enriched for alkaline-labile sites. Eur J Histochem 2010;54:e32. DOI: https://doi.org/10.4081/ejh.2010.e32
Cortés Gutiérrez EI, García-Vielma C, Aguilar-Lemarroy A, Vallejo-Ruíz V, Piña-Sánchez P, Zapata-Benavides P, et al. Expression of the HPV18/E6 oncoprotein induces DNA damage. Eur J Histochem 2017;61:2773. DOI: https://doi.org/10.4081/ejh.2017.2773
Malatesta M. Ultrastructural histochemistry in biomedical research: alive and kicking. Eur J Histochem 2018;62:2990. DOI: https://doi.org/10.4081/ejh.2018.2990
Ortiz R, Echeverría OM, Ubaldo E, Carlos A, Scassellati C, Vázquez-Nin GH. Cytochemical study of the distribution of RNA and DNA in the synaptonemal complex of guinea-pig and rat spermatocytes. Eur J Histochem 2002;46:133-42. DOI: https://doi.org/10.4081/1663
Pederson T. The molecular cytology of gene expression: fluorescent RNA as both a stain and tracer in vivo. Eur J Histochem 2004;48:57-64.
Medina FJ, Cerdido A, de Cárcer G. The functional organization of the nucleolus in proliferating plant cells. Eur J Histochem 2000;44:117-31.
Smetana K. Structural features of nucleoli in blood, leukemic, lymphoma and myeloma cells. Eur J Histochem 2002;46:125-32. DOI: https://doi.org/10.4081/1661
Berger J. Nucleolar size in lymphocytes and haemocytes of different species. Eur J Histochem 2008;52:149-52. DOI: https://doi.org/10.4081/1205
Smetana K, Klamová H, Mikulenková D, Pluskalová M, Hrkal Z. On the nucleolar size and density in human early granulocytic progenitors, myeloblasts. Eur J Histochem 2006;50:119-24.
Smetana K, Zápotocky M, Starková J, Trka J. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A. Eur J Histochem 2008;52:143-8. DOI: https://doi.org/10.4081/1204
Smetana K, Kuzelova K, Zápotocký M, Starková J, Hrkal Z, Trka J. Mean diameter of nucleolar bodies in cultured human leukemic myeloblasts is mainly related to the S and G2 phase of the cell cycle. Eur J Histochem 2007;51:269-74.
Smetana K, Hrkal Z. Nucleoli in large (giant) bi- and multinucleate cells after apoptosis-inducing photodynamic treatment. Eur J Histochem 2003;47:39-43. DOI: https://doi.org/10.4081/805
Soldani C, Bottone MG, Pellicciari C, Scovassi AI. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67. Eur J Histochem 2006;50:273-80.
Pellicciari C, Bottone MG, Scovassi AI, Martin TE, Biggiogera M. Rearrangement of nuclear ribonucleoproteins and extrusion of nucleolus-like bodies during apoptosis induced by hypertonic stress. Eur J Histochem 2000;44:247-54.
Costanzo M, Cisterna B, Zharskaya OO, Zatsepina OV, Biggiogera M. Discrete foci containing RNase A are found in nucleoli of HeLa cells after aging in culture. Eur J Histochem 2011;55:e15. DOI: https://doi.org/10.4081/ejh.2011.e15
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004;23:4051-60. DOI: https://doi.org/10.1038/sj.emboj.7600385
Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 2006;13:1102-7. DOI: https://doi.org/10.1038/nsmb1174
Kim DH, Saetrom P, Snove O Jr, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008;105:16230-5. DOI: https://doi.org/10.1073/pnas.0808830105
Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 1991;349:38–44. DOI: https://doi.org/10.1038/349038a0
Tao F, Wang F, Zhang W, Hao Y. MicroRNA-22 enhances the differentiation of mouse induced pluripotent stem cells into alveolar epithelial type II cells. Eur J Histochem 2020;64:3170. DOI: https://doi.org/10.4081/ejh.2020.3170
Ouyang J, Song F, Li H, Yang R, Huang H. miR-126 targeting GOLPH3 inhibits the epithelial-mesenchymal transition of gastric cancer BGC-823 cells and reduces cell invasion. Eur J Histochem 2020;64:3168. DOI: https://doi.org/10.4081/ejh.2020.3168
Xu N, Li AD, Ji LL, Ye Y, Wang ZY, Tong L. miR-132 regulates the expression of synaptic proteins in APP/PS1 transgenic mice through C1q. Eur J Histochem 2019;63:3008. DOI: https://doi.org/10.4081/ejh.2019.3008
Li H, Zeng Z, Yang X, Chen Y, He L, Wan T. LncRNA GClnc1 may contribute to the progression of ovarian cancer by regulating p53 signaling pathway. Eur J Histochem 2020;64:3166. DOI: https://doi.org/10.4081/ejh.2020.3166
Li Z, Hong Z, Zheng Y, Dong Y, He W, Yuan Y, Guo J. An emerging potential therapeutic target for osteoporosis: LncRNA H19/miR-29a-3p axis. Eur J Histochem 2020;64:3155. DOI: https://doi.org/10.4081/ejh.2020.3155
Malatesta M, Meola G. Structural and functional alterations of the cell nucleus in skeletal muscle wasting: the evidence in situ. Eur J Histochem 2010;54:e44. DOI: https://doi.org/10.4081/ejh.2010.e44
Perdoni F, Malatesta M, Cardani R, Giagnacovo M, Mancinelli E, Meola G, et al. RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study. Eur J Histochem 2009;53:e18. DOI: https://doi.org/10.4081/ejh.2009.e18
Malatesta M, Giagnacovo M, Renna LV, Cardani R, Meola G, Pellicciari C. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence. Eur J Histochem 2011;55:e26. DOI: https://doi.org/10.4081/ejh.2011.e26
Malatesta M. Skeletal muscle features in myotonic dystrophy and sarcopenia: do similar nuclear mechanisms lead to skeletal muscle wasting? Eur J Histochem 2012;56:e36. DOI: https://doi.org/10.4081/ejh.2012.e36
Malatesta M, Giagnacovo M, Costanzo M, Cisterna B, Cardani R, Meola G. Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. Eur J Histochem 2013;57:e15. DOI: https://doi.org/10.4081/ejh.2013.e15

Supporting Agencies

Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018-2022), Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia , Italy

How to Cite

Casali, C., Siciliani, S., Zannino, L., & Biggiogera, M. (2022). Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry. European Journal of Histochemistry, 66(2). https://doi.org/10.4081/ejh.2022.3409