Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis
Accepted: 29 August 2023
HTML: 8
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Pulmonary fibrosis is a progressive lung disorder. Evidence has shown that hsa_circular (circ)RNA_0001861 is dysregulated in pulmonary fibrosis. However, the detailed function of hsa_circRNA_0001861 in pulmonary fibrosis remains unexplored. To investigate the function of hsa_circRNA_0001861 in pulmonary fibrosis, human pulmonary fibroblasts in vitro were used, and cell counting kit-8 (CCK-8) and 5-ethynyl-2’-deoxyuridine (EdU) staining were performed to assess cell viability and proliferation, respectively. Western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to evaluate protein and mRNA levels. Meanwhile, the relationship among hsa_circRNA_0001861, miR-296-5p and BCL-2 binding component 3 (BBC3) was investigated by RNA pull-down assays. Furthermore, an in vivo model of lung fibrosis was constructed to assess the function of hsa_circRNA_0001861 in lung fibrosis. The data revealed that TGF‑β1 significantly increased the proliferation of pulmonary fibroblasts, while this phenomenon was markedly abolished by hsa_circRNA_0001861 overexpression. hsa_circRNA_0001861 overexpression markedly inhibited TGF‑β1‑induced fibrosis in pulmonary fibroblasts through the mediation of α-smooth muscle actin, E-cadherin, collagen III and fibronectin 1. Meanwhile, hsa_circRNA_0001861 could bind with miR-296-5p, and BBC3 was identified to be the downstream mRNA of miR-296-5p. In addition, the upregulation of hsa_circRNA_0001861 clearly reversed TGF‑β1‑induced fibrosis and proliferation in pulmonary fibroblasts through the upregulation of BBC3. Furthermore, hsa_circRNA_0001861 upregulation markedly alleviated pulmonary fibrosis in vivo. Hsa_circRNA_0001861 upregulation attenuated pulmonary fibrosis by modulating the miR-296-5p/BBC3 axis. Hence, the present study may provide some insights for the discovery of new methods against pulmonary fibrosis.
Ethics Approval
The Ethics Committee of the First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine approved this studyHow to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.