Ozone and procaine increase secretion of platelet-derived factors in platelet-rich plasma

Submitted: 20 September 2023
Accepted: 4 October 2023
Published: 10 October 2023
Abstract Views: 646
PDF: 286
HTML: 5
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Platelet-rich plasma (PRP) is gaining more and more attention in regenerative medicine as an innovative and efficient therapeutic approach. The regenerative properties of PRP rely on the numerous bioactive molecules released by the platelets: growth factors are involved in proliferation and differentiation of endothelial cells and fibroblasts, angiogenesis and extracellular matrix formation, while cytokines are mainly involved in immune cell recruitment and inflammation modulation. Attempts are ongoing to improve the therapeutic potential of PRP by combining it with agents able to promote regenerative processes. Two interesting candidates are ozone, administered at low doses as gaseous oxygen-ozone mixtures, and procaine. In the present study, we investigated the effects induced on platelets by the in vitro treatment of PRP with ozone or procaine, or both. We combined transmission electron microscopy to obtain information on platelet modifications and bioanalytical assays to quantify the secreted factors. The results demonstrate that, although platelets were already activated by the procedure to prepare PRP, both ozone and procaine induced differential morpho-functional modifications in platelets resulting in an increased release of factors. In detail, ozone induced an increase in surface protrusions and open canalicular system dilation suggestive of a marked α-granule release, while procaine caused a decrease in surface protrusions and open canalicular system dilation but a remarkable increase in microvesicle release suggestive of high secretory activity. Consistently, nine of the thirteen platelet-derived factors analysed in the PRP serum significantly increased after treatment with ozone and/or procaine. Therefore, ozone and procaine proved to have a remarkable stimulating potential without causing any damage to platelets, probably because they act through physiological, although different, secretory pathways.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004;103:2096-104. DOI: https://doi.org/10.1182/blood-2003-08-2804
Piersma SR, Broxterman HJ, Kapci M, de Haas RR, Hoekman K, Verheul HMW, Jiménez CR. Proteomics of the TRAP-induced platelet releasate. J Proteomics 2009;72:91-109. DOI: https://doi.org/10.1016/j.jprot.2008.10.009
Amable PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Corrêa do Amaral RJ, Granjeiro JM, Borojevic R. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 2013;4:67. DOI: https://doi.org/10.1186/scrt218
Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020. Int J Mol Sci 2020;21:7794. DOI: https://doi.org/10.3390/ijms21207794
Spakova T, Janockova J, Rosocha J. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int J Mol Sci 2021;22:9701. DOI: https://doi.org/10.3390/ijms22189701
Mishra A, Harmon K, Woodall J, Vieira A. Sports medicine applications of platelet-rich plasma. Curr Pharm Biotechnol 2012;13:1185-95. DOI: https://doi.org/10.2174/138920112800624283
Filardo G, Kon E, Di Martino A, Di Matteo B, Merli ML, Cenacchi A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord 2012;13:229. DOI: https://doi.org/10.1186/1471-2474-13-229
Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg 2014;7:189-97. DOI: https://doi.org/10.4103/0974-2077.150734
Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Appendage Disord 2018;4:18-24. DOI: https://doi.org/10.1159/000477353
Cervelli V, Gentile P, Grimaldi M. Regenerative surgery: use of fat grafting combined with platelet-rich plasma for chronic lower-extremity ulcers. Aesthetic Plast Surg 2009;33:340-5. DOI: https://doi.org/10.1007/s00266-008-9302-z
Mazzucco L, Balbo V, Cattana E, Guaschino R, Borzini P. Not every PRP-gel is born equal. Evaluation of growth factor availability for tissues through four PRP-gel preparations: Fibrinet, RegenPRP-Kit, Plateltex, Plateltex aktivated. Vox Sang 2009;97:110-8. DOI: https://doi.org/10.1111/j.1423-0410.2009.01188.x
Döri F, Nikolidakis D, Húszár T, Arweiler NB, Gera I, Sculean A. Effect of platelet-rich plasma on the healing of intrabony defects treated with an enamel matrix protein derivative and a natural bone mineral. J Clin Periodontol 2008;35:44-50. DOI: https://doi.org/10.1111/j.1600-051X.2007.01161.x
Del Corso M, Vervelle A, Simonpieri A, Jimbo R, Inchingolo F, Sammartino G, Dohan Ehrenfest DM. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol 2012;13:1207-30. DOI: https://doi.org/10.2174/138920112800624391
Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G, Dohan Ehrenfest DM. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol 2012;13:1231-56. DOI: https://doi.org/10.2174/138920112800624472
Deepthi R, Bilichodmath S. Ozone therapy in periodontics: a meta-analysis. Contemp Clin Dent 2020;11:108-15. DOI: https://doi.org/10.4103/ccd.ccd_79_19
Anil U, Markus DH, Hurley ET, Manjunath AK, Alaia MJ, Campbell KA, et al. The efficacy of intra-articular injections in the treatment of knee osteoarthritis: a network meta-analysis of randomized controlled trials. Knee 2021;32:173-82. DOI: https://doi.org/10.1016/j.knee.2021.08.008
Masan J, Sramka M, Rabarova D. The possibilities of using the effects of ozone therapy in neurology. Neuro Endocrinol Lett 2021;42:13-21.
Machado AU, Contri RV. Effectiveness and safety of ozone therapy for dermatological disorders: a literature review of clinical trials. Indian J Dermatol 2022;67:479.
AlMogbel AA, Albarrak MI, AlNumair SF. Ozone therapy in the management and prevention of caries. Cureus 2023;15:e37510. DOI: https://doi.org/10.7759/cureus.37510
Niki E. Oxidative stress and antioxidants: distress or eustress? Arch Biochem Biophys 2016;595:19-24. DOI: https://doi.org/10.1016/j.abb.2015.11.017
Re L, Mawsouf MN, Menéndez S, León OS, Sánchez GM, Hernández F. Ozone therapy: clinical and basic evidence of its therapeutic potential. Arch Med Res 2008;39:17-26. DOI: https://doi.org/10.1016/j.arcmed.2007.07.005
Bocci V, Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front Chem 2015;3:4. DOI: https://doi.org/10.3389/fchem.2015.00004
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018;124:114-21. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.05.093
Galiè M, Covi V, Tabaracci G, Malatesta M. The role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int J Mol Sci 2019;20:4009. DOI: https://doi.org/10.3390/ijms20164009
Wang L, Chen H, Liu XH, Chen ZY, Weng XD, Qiu T, et al. Ozone oxidative preconditioning inhibits renal fibrosis induced by ischemia and reperfusion injury in rats. Exp Ther Med 2014;8:1764-8. DOI: https://doi.org/10.3892/etm.2014.2004
Izadi M, Kheirjou R, Mohammadpour R, Aliyoldashi MH, Moghadam SJ, Khorvash F, et al. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing. Diabetes Metab Syndr 2019;13:822-5. DOI: https://doi.org/10.1016/j.dsx.2018.11.060
Cisterna B, Costanzo M, Nodari A, Galiè M, Zanzoni S, Bernardi P, et al. Ozone activates the Nrf2 pathway and improves preservation of explanted adipose tissue in vitro. Antioxidants 2020;9:989. DOI: https://doi.org/10.3390/antiox9100989
Pchepiorka R, Moreira MS, Lascane NADS, Catalani LH, Allegrini S Jr, de Lima NB, Gonçalves EF. Effect of ozone therapy on wound healing in the buccal mucosa of rats. Arch Oral Biol 2020;119:104889. DOI: https://doi.org/10.1016/j.archoralbio.2020.104889
Sen S, Sen S. Ozone therapy a new vista in dentistry: integrated review. Med Gas Res 2020;10:189-92. DOI: https://doi.org/10.4103/2045-9912.304226
Wang R, Liu F, Huang P, Zhang Y, He J, Pang X, et al. Ozone preconditioning protects rabbit heart against global ischemia-reperfusion injury in vitro by up-regulating HIF-1α. Biomed Pharmacother 2022;150:113033. DOI: https://doi.org/10.1016/j.biopha.2022.113033
Dernek B, Kesiktas FN. Efficacy of combined ozone and platelet-rich-plasma treatment versus platelet-rich-plasma treatment alone in early stage knee osteoarthritis. J Back Musculoskelet Rehabil 2019;32:305-11. DOI: https://doi.org/10.3233/BMR-181301
Huang P, Wang R, Pang X, Yang Y, Guan Y, Zhang D. Platelet-rich plasma combined with ozone prevents cartilage destruction and improves weight-bearing asymmetry in a surgery-induced osteoarthritis rabbit model. Ann Palliat Med. 2022;11:442-51. DOI: https://doi.org/10.21037/apm-21-1510
Gurger M, Once G, Yilmaz E, Demir S, Calik I, Say Y, et al. The effect of the platelet-rich plasma and ozone therapy on tendon-to-bone healing in the rabbit rotator cuff repair model. J Orthop Surg Res 2021;16:202. DOI: https://doi.org/10.1186/s13018-021-02320-w
Gradinaru D, Ungurianu A, Margina D, Moreno-Villanueva M, Bürkle A. Procaine-the controversial geroprotector candidate: new insights regarding its molecular and cellular effects. Oxid Med Cell Longev 2021;2021:3617042. DOI: https://doi.org/10.1155/2021/3617042
Egli S, Pfister M, Ludin SM, Puente de la Vega K, Busato A, Fischer L. Long-term results of therapeutic local anesthesia (neural therapy) in 280 referred refractory chronic pain patients. BMC Complement Altern Med 2015 ;15:200. DOI: https://doi.org/10.1186/s12906-015-0735-z
Rey Novoa M, Muñoz-Sellart M, Catalán Soriano M, Vinyes D. Treatment of localized vulvar pain with neural therapy: a case series and literature review. Complement Med Res 2021;28:571-7. DOI: https://doi.org/10.1159/000514945
Weinschenk S, Benrath J, Kessler E, Strowitzki T, Feisst M. Therapy with local anesthetics to treat vulvodynia. A pilot study. Sex Med 202210:100482. DOI: https://doi.org/10.1016/j.esxm.2021.100482
Lin J. Platelet-rich plasma injection in the treatment of frozen shoulder: a randomized controlled trial with 6-month follow-up. Int J Clin Pharmacol Ther 2018;56:366-71. DOI: https://doi.org/10.5414/CP203262
Almhanawi BH, Khalid B, Ibrahim TA, Tohit ERM. A transmission electron microscopy study of anticoagulant-induced platelet vesiculation. Porto Biomed J 2017;2:23-7. DOI: https://doi.org/10.1016/j.pbj.2016.11.002
Bocci V, Valacchi G, Rossi R, Giustarini D, Paccagnini E, Pucci AM, Di Simplicio P. Studies on the biological effects of ozone: 9. Effects of ozone on human platelets. Platelets 1999;10:110-6. DOI: https://doi.org/10.3109/09537109909169172
Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 2009;23:177-89. DOI: https://doi.org/10.1016/j.blre.2009.04.001
Neumüller J, Meisslitzer-Ruppitsch C, Ellinger A, Pavelka M, Jungbauer C, Renz R, et al. Monitoring of platelet activation in platelet concentrates using transmission electron microscopy. Transfus Med Hemother 2013;40:101-7. DOI: https://doi.org/10.1159/000350034
Selvadurai MV, Hamilton JR. Structure and function of the open canalicular system - the platelet's specialized internal membrane network. Platelets 2018;29:319-25. DOI: https://doi.org/10.1080/09537104.2018.1431388
Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets 2001;12:261-73. DOI: https://doi.org/10.1080/09537100120068170
Neumüller J, Ellinger A, Wagner T. Transmission Electron Microscopy of Platelets from Apheresis and Buffy-Coat-Derived Platelet Concentrates. In: Khan M. editor. The Transmission Electron Microscope - Theory and Applications. London: IntechOpen; 2015. p. 255-84. DOI: https://doi.org/10.5772/60673
Harrison P, Cramer EM. Platelet alpha-granules. Blood Rev 1993;7:52-62. DOI: https://doi.org/10.1016/0268-960X(93)90024-X
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999;94:3791-9. DOI: https://doi.org/10.1182/blood.V94.11.3791.423a22_3791_3799
Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol 2015;22:437-44. DOI: https://doi.org/10.1097/MOH.0000000000000166
Sagai M, Bocci V. Mechanisms of action involved in ozone therapy: is healing induced via a mild oxidative stress? Med Gas Res 2011;1:29. DOI: https://doi.org/10.1186/2045-9912-1-29
Costanzo M, Cisterna B, Vella A, Cestari T, Covi V, Tabaracci G, Malatesta M. Low ozone concentrations stimulate cytoskeletal organization, mitochondrial activity and nuclear transcription. Eur J Histochem 2015;59:2515. DOI: https://doi.org/10.4081/ejh.2015.2515
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low ozone concentrations differentially affect the structural and functional features of non-activated and activated fibroblasts in vitro. Int J Mol Sci 2021;22:10133. DOI: https://doi.org/10.3390/ijms221810133
Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM. The actin cytoskeleton differentially regulates platelet a-granule and dense-granule secretion. Blood 2005;105: 3879–87. DOI: https://doi.org/10.1182/blood-2004-04-1392
Fox JE. The platelet cytoskeleton. Thromb Haemost 1993;70:884-93. DOI: https://doi.org/10.1055/s-0038-1649694
Hartwig JH. The platelet: form and function. Semin Hematol 2006;43:S94-100. DOI: https://doi.org/10.1053/j.seminhematol.2005.11.004
Ge S, White JG, Haynes CL. Cytoskeletal F-actin, not the circumferential coil of microtubules, regulates platelet dense-body granule secretion. Platelets 2012;23:259-63. DOI: https://doi.org/10.3109/09537104.2011.620657
Pertuy F, Eckly A, Weber J, Proamer F, Rinckel J-Y, Lanza F, et al. Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets. Blood 2014;123:1261–9. DOI: https://doi.org/10.1182/blood-2013-06-508168
Iwamura M, Ishimori T, Makino M, Yasuda K, Izumi A, Himori N. Drug-induced inhibition of guinea pig platelet aggregation unrelated to their beta-adrenolytic actions. Jpn J Pharmacol 1983;33:219-26. DOI: https://doi.org/10.1016/S0021-5198(19)52559-8
Watala C, Boncler M, Golański J, Koziołkiewicz W, Walkowiak B, Cierniewski CS. Release of calcium and P-selectin from intraplatelet granules is hampered by procaine. Thromb Res 1999;94:1-11. DOI: https://doi.org/10.1016/S0049-3848(98)00174-1
Frangopol PT, Mihăilescu D. Interactions of some local anesthetics and alcohols with membranes. Colloids Surf B Biointerfaces 2001;22:3-22. DOI: https://doi.org/10.1016/S0927-7765(01)00153-9
Prowse C, Pepper D, Dawes J. Prevention of the platelet alpha-granule release reaction by membrane-active drugs. Thromb Res 1982;25:219-27. DOI: https://doi.org/10.1016/0049-3848(82)90241-9
Yau TM. Procaine-mediated modification of membranes and of the response to X irradiation and hyperthermia in mammalian cells. Radiat Res 1979;80:523-41. DOI: https://doi.org/10.2307/3574994
Mussano F, Genova T, Munaron L, Petrillo S, Erovigni F, Carossa S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 2016;27:467-71. DOI: https://doi.org/10.3109/09537104.2016.1143922
Dregalla RC, Herrera JA, Donner EJ. Soluble factors differ in platelets derived from separate niches: a pilot study comparing the secretome of peripheral blood and bone marrow platelets. Cytotherapy 2021;23:677-82. DOI: https://doi.org/10.1016/j.jcyt.2021.01.004
Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost 2003;1:1897-905. DOI: https://doi.org/10.1046/j.1538-7836.2003.00304.x
Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005;122:379-91. DOI: https://doi.org/10.1016/j.cell.2005.06.015
Valacchi G, Bocci V. Studies on the biological effects of ozone: 10. Release of factors from ozonated human platelets. Mediators Inflamm 1999;8:205-9. DOI: https://doi.org/10.1080/09629359990360
Cappellozza E, Costanzo M, Calderan L, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low ozone concentrations affect the structural and functional features of Jurkat T cells. Processes 2021;9:1030. DOI: https://doi.org/10.3390/pr9061030
Oleksowicz L, Paciucci PA, Zuckerman D, Colorito A, Rand JH, Holland JF. Alterations of platelet function induced by interleukin-2. J Immunother 1991;10:363-70. DOI: https://doi.org/10.1097/00002371-199110000-00008

Ethics Approval

this study was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2013. The written informed consent was obtained from volunteer donors.

How to Cite

Inguscio, C. R., Cisterna, B., Lacavalla, M. A., Donati, F., Angelini, O., Tabaracci, G., & Malatesta, M. (2023). Ozone and procaine increase secretion of platelet-derived factors in platelet-rich plasma . European Journal of Histochemistry, 67(4). https://doi.org/10.4081/ejh.2023.3879