MiR-550a-3p restores damaged vascular smooth muscle cells by inhibiting thrombomodulin in an in vitro atherosclerosis model

Submitted: 23 April 2022
Accepted: 4 July 2022
Published: 19 July 2022
Abstract Views: 648
PDF: 390
Supplementary: 75
HTML: 20
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Thrombomodulin (TM) is involved in the pathological process of atherosclerosis; however, the underlying mechanism remains unclear. Oxidised low-density lipoprotein (Ox-LDL; 100 μg/mL) was used to induce human vascular smooth muscle cells (HVSMCs) into a stable atherosclerotic cell model. The expression levels of miR-550a-3p and TM were detected by real-time reverse transcription-polymerase chain reaction. Cell proliferation was estimated using CCK8 and EDU assays. Wound scratch and transwell assays were used to measure the ability of cells to invade and migrate. Propidium iodide fluorescence-activated cell sorting was used to detect apoptosis and cell cycle changes. A dual-luciferase reporter assay was performed to determine the binding of miR-550a-3p to TM. Our results suggested the successful development of a cellular atherosclerosis model. Our data revealed that TM overexpression significantly promoted the proliferation, invasion, migration, and apoptosis of HVSMCs as well as cell cycle changes. Upregulation of miR-550a-3p inhibited the growth and metastasis of HVSMCs. Furthermore, miR-550a-3p was confirmed to be a direct target of TM. Restoration of miR-550a-3p expression rescued the effects of TM overexpression. Thus, miR-550a-3p might play a role in atherosclerosis and, for the first time, normalised the function of injured vascular endothelial cells by simultaneous transfection of TM and miR-550a-3p. These results suggest that the miR-550a-3p/TM axis is a potential therapeutic target for atherosclerosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016;118:531-4. DOI: https://doi.org/10.1161/CIRCRESAHA.116.308334
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016;118:535-46. DOI: https://doi.org/10.1161/CIRCRESAHA.115.307611
Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006;86:515-81. DOI: https://doi.org/10.1152/physrev.00024.2005
Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006;47:C7-12. DOI: https://doi.org/10.1016/j.jacc.2005.09.068
Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;12:204-12. DOI: https://doi.org/10.1038/ni.2001
Libby P. The changing landscape of atherosclerosis. Nature 2021;592:524-33. DOI: https://doi.org/10.1038/s41586-021-03392-8
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018;8:80. DOI: https://doi.org/10.3390/biom8030080
Chen PS, Wang KC, Chao TH, Chung HC, Tseng SY, Luo CY, et al. Recombinant thrombomodulin exerts anti-autophagic action in endothelial cells and provides anti-atherosclerosis effect in apolipoprotein E deficient mice. Sci Rep 2017;7:3284. DOI: https://doi.org/10.1038/s41598-017-03443-z
Qian G, Ding Z, Zhang B, Li Q, Jin W, Zhang Q. Association of thrombomodulin Ala455Val dimorphism and inflammatory cytokines with carotid atherosclerosis in the Chinese Han population. J Inflamm Res 2012;5:117-23. DOI: https://doi.org/10.2147/JIR.S36510
Raife TJ, Dwyre DM, Stevens JW, Erger RA, Leo L, Wilson KM, et al. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis. Arterioscler Thromb Vasc Biol 2011;31:2509-17. DOI: https://doi.org/10.1161/ATVBAHA.111.236828
Wei Y, Lai B, Liu H, Li Y, Zhen W, Fu L. Effect of cigarette smoke extract and nicotine on the expression of thrombomodulin and endothelial protein C receptor in cultured human umbilical vein endothelial cells. Mol Med Rep 2018;17:1724-30. DOI: https://doi.org/10.3892/mmr.2017.8070
Martinez-Fierro ML, Castruita-De La Rosa C, Garza-Veloz I, Cardiel-Hernandez RM, Espinoza-Juarez MA, Delgado-Enciso I, et al. Early pregnancy protein multiplex screening reflects circulating and urinary divergences associated with the development of preeclampsia. Hypertens Pregnancy 2018;37:37-50. DOI: https://doi.org/10.1080/10641955.2017.1411946
Rega-Kaun G, Kaun C, Ebenbauer B, Jaegersberger G, Prager M, Wojta J, et al. Bariatric surgery in morbidly obese individuals affects plasma levels of protein C and thrombomodulin. J Thromb Thrombolysis 2019;47:51-6. DOI: https://doi.org/10.1007/s11239-018-1744-9
Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018;132:148-58. DOI: https://doi.org/10.1182/blood-2017-12-768994
Tucker EI, Verbout NG, Markway BD, Wallisch M, Lorentz CU, Hinds MT, et al. The protein C activator AB002 rapidly interrupts thrombus development in baboons. Blood 2020;135:689-99. DOI: https://doi.org/10.1182/blood.2019002771
O'Donnell JS, O'Sullivan JM, Preston RJS. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Br J Haematol 2019;186:24-36. DOI: https://doi.org/10.1111/bjh.15872
Stojanovski BM, Pelc LA, Zuo X, Di Cera E. Zymogen and activated protein C have similar structural architecture. J Biol Chem 2020;295:15236-44. DOI: https://doi.org/10.1074/jbc.RA120.014789
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-arrestins and receptor signaling in the vascular endothelium. Biomolecules 2020;11:9. DOI: https://doi.org/10.3390/biom11010009
Lymperopoulos A. Arrestins in the cardiovascular system: an update. Prog Mol Biol Transl Sci 2018;159:27-57. DOI: https://doi.org/10.1016/bs.pmbts.2018.07.003
Sebert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-activated receptors in the intestine: focus on inflammation and cancer. Front Endocrinol (Lausanne) 2019;10:717. DOI: https://doi.org/10.3389/fendo.2019.00717
Gianazza E, Brioschi M, Baetta R, Mallia A, Banfi C, Tremoli E. Platelets in healthy and disease states: from biomarkers discovery to drug targets identification by proteomics. Int J Mol Sci 2020;21:4541. DOI: https://doi.org/10.3390/ijms21124541
Li J, Hara H, Wang Y, Esmon C, Cooper DKC, Iwase H. Evidence for the important role of inflammation in xenotransplantation. J Inflamm (Lond) 2019;16:10. DOI: https://doi.org/10.1186/s12950-019-0213-3
Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol 2001;159:797-802. DOI: https://doi.org/10.1016/S0002-9440(10)61753-1
Tohda G, Oida K, Okada Y, Kosaka S, Okada E, Takahashi S, et al. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1998;18:1861-9. DOI: https://doi.org/10.1161/01.ATV.18.12.1861
Li J, Garnette CS, Cahn M, Claytor RB, Rohrer MJ, Dobson JG Jr., et al. Recombinant thrombomodulin inhibits arterial smooth muscle cell proliferation induced by thrombin. J Vasc Surg 2000;32:804-13. DOI: https://doi.org/10.1067/mva.2000.107992
Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 2019;115:1732-56. DOI: https://doi.org/10.1093/cvr/cvz203
Yuan L, Wang D, Wu C. Protective effect of liquiritin on coronary heart disease through regulating the proliferation of human vascular smooth muscle cells via upregulation of sirtuin1. Bioengineered. 2022;13:2840-50. DOI: https://doi.org/10.1080/21655979.2021.2024687
Llorente-Cortés V, Martínez-González J, Badimon L. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000;20:1572-9. DOI: https://doi.org/10.1161/01.ATV.20.6.1572
Yu Z, Han Y, Shen R, Huang K, Xu YY, Wang QN, et al. Gestational di-(2-ethylhexyl) phthalate exposure causes fetal intrauterine growth restriction through disturbing placental thyroid hormone receptor signaling. Toxicol Lett 2018;294:1-10. DOI: https://doi.org/10.1016/j.toxlet.2018.05.013
Li YH, Shi GY, Wu HL. The role of thrombomodulin in atherosclerosis: from bench to bedside. Cardiovasc Hematol Agents Med Chem 2006;4:183-7. DOI: https://doi.org/10.2174/187152506776369953
Giri H, Cai X, Panicker SR, Biswas I, Rezaie AR. Thrombomodulin regulation of mitogen-activated protein kinases. Int J Mol Sci 2019;20:1851. DOI: https://doi.org/10.3390/ijms20081851
Pai VC, Lo IC, Huang YW, Tsai IC, Cheng HP, Shi GY, et al. The chondroitin sulfate moiety mediates thrombomodulin-enhanced adhesion and migration of vascular smooth muscle cells. J Biomed Sci 2018;25:14. DOI: https://doi.org/10.1186/s12929-018-0415-7
Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, et al. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc Res 2011;92:317-27. DOI: https://doi.org/10.1093/cvr/cvr220
Li YH, Kuo CH, Shi GY, Wu HL. The role of thrombomodulin lectin-like domain in inflammation. J Biomed Sci 2012;19:34. DOI: https://doi.org/10.1186/1423-0127-19-34
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest 2017;127:761-71. DOI: https://doi.org/10.1172/JCI84424
Wu HH, Lin WC, Tsai KW. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med 2014;16:e1. DOI: https://doi.org/10.1017/erm.2013.16
Ho JY, Hsu RJ, Wu CH, Liao GS, Gao HW, Wang TH, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget 2016;7:53853-68. DOI: https://doi.org/10.18632/oncotarget.10793
Tian Q, Liang L, Ding J, Zha R, Shi H, Wang Q, et al. MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma. PLoS One 2012;7:e48958. DOI: https://doi.org/10.1371/journal.pone.0048958
Wang G, Fu Y, Yang X, Luo X, Wang J, Gong J, et al. Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene 2017;36:5915. DOI: https://doi.org/10.1038/onc.2017.317
Lu XG, Kang X, Zhan LB, Kang LM, Fan ZW, Bai LZ. Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol 2017;23:7440-9. DOI: https://doi.org/10.3748/wjg.v23.i41.7440
Satoh J, Kino Y, Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer's disease from public data. Biomark Insights 2015;10:21-31. DOI: https://doi.org/10.4137/BMI.S25132
He J, Guo X, Liu ZQ, Yang PC, Yang S. Micro RNA-550a interferes with vitamin D metabolism in peripheral B cells of patients with diabetes. Cell Biochem Funct 2016;34:640-6. DOI: https://doi.org/10.1002/cbf.3240
Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, et al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 2016;101:4125-34. DOI: https://doi.org/10.1210/jc.2016-2365
Mozos I, Malainer C, Horbanczuk J, Gug C, Stoian D, Luca CT, et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front Immunol 2017;8:1058. DOI: https://doi.org/10.3389/fimmu.2017.01058

Rights

Key Project of Natural Science research in Universities of Anhui Province; post-graduate project of Natural Science research in Universities of Anhui Province; key Scientific research project of Anhui Provincial Health Commission

How to Cite

Chen, S., Zhang, L., Feng, B., Wang, W., Liu, D., Zhao, X., Yu, C., Wang, X., & Gao, Y. (2022). MiR-550a-3p restores damaged vascular smooth muscle cells by inhibiting thrombomodulin in an <em>in vitro</em> atherosclerosis model . European Journal of Histochemistry, 66(3). https://doi.org/10.4081/ejh.2022.3429