MicroRNA-29b-3p promotes 5-fluorouracil resistance via suppressing TRAF5-mediated necroptosis in human colorectal cancer

Submitted: 16 March 2021
Accepted: 21 May 2021
Published: 22 June 2021
Abstract Views: 1067
PDF: 734
Supplementary: 112
HTML: 13
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Drug resistance in colorectal cancer is a great challenge in clinic. Elucidating the deep mechanism underlying drug resistance will bring much benefit to diagnosis, therapy and prognosis in patients with colorectal cancer. In this study, miR-29b-3p was shown to be involved in resistance to 5-fluorouracil (5-FU)-induced necroptosis of colorectal cancer. Further, miR-29b-3p was shown to target a regulatory subunit of necroptosis TRAF5. Rescue of TRAF5 could reverse the effect of miR-29b-3p on 5-FU-induced necroptosis, which was consistent with the role ofnecrostatin-1 (a specific necroptosis inhibitor). Then it was demonstrated that miR-29b-3p was positively correlated with chemo-resistance in colorectal cancer while TRAF5 negatively. In conclusion, it is deduced that miR-29b-3p/TRAF5 signaling axis plays critical role in drug resistance in chemotherapy for colorectal cancer patients by regulating necroptosis. The findings in this study provide us a new target for interfere therapy in colorectal cancer.



PlumX Metrics


Download data is not yet available.


Janney A, Powrie F, Mann EH. Host-microbiota maladaptation in colorectal cancer. Nature 2020;585:509-17. DOI: https://doi.org/10.1038/s41586-020-2729-3
Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 2021;184: 226-42 e221. DOI: https://doi.org/10.1016/j.cell.2020.11.018
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021;71:7-33. DOI: https://doi.org/10.3322/caac.21654
Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330-8. DOI: https://doi.org/10.1038/nrc1074
Adlard JW, Richman SD, Seymour MT, Quirke P. Prediction of the response of colorectal cancer to systemic therapy. Lancet Oncol 2002;3:75-82. DOI: https://doi.org/10.1016/S1470-2045(02)00648-4
Filipits M, Pohl G, Rudas M, Dietze O, Lax S, Grill R, et al. Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer: the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol 2005;23:1161-8. DOI: https://doi.org/10.1200/JCO.2005.03.033
Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997;15:3223-9. DOI: https://doi.org/10.1200/JCO.1997.15.10.3223
Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Ruhl S, et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity 2020;52:994-1006.e8. DOI: https://doi.org/10.1016/j.immuni.2020.04.010
Gong YT, Fan ZY, Luo GP, Yang C, Huang QY, Fan K, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019;18:100. DOI: https://doi.org/10.1186/s12943-019-1029-8
Cremolini C, Rossini D, Dell'Aquila E, Lonardi S, Conca E, Del Re M, et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: A phase 2 single-arm clinical trial. JAMA Oncol 2019;5:343-50. DOI: https://doi.org/10.1001/jamaoncol.2018.5080
Fresquet V, Garcia-Barchino MJ, Larrayoz MJ, Celay J, Vicente C, Fernandez-Galilea M, et al. Endogenous retroelement activation by epigenetic therapy reverses the Warburg effect and elicits mitochondrial-mediated cancer cell death. Cancer Discov 2020;11:1268-85. DOI: https://doi.org/10.1158/2159-8290.CD-20-1065
Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 2018;28:1171-85. DOI: https://doi.org/10.1038/s41422-018-0090-y
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 2019;575:679-82. DOI: https://doi.org/10.1038/s41586-019-1752-8
Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol 2019;19:141-53. DOI: https://doi.org/10.1038/s41577-018-0117-0
Seehawer M, Heinzmann F, D'Artista L, Harbig J, Roux PF, Hoenicke L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 2018;562:69-75. DOI: https://doi.org/10.1038/s41586-018-0519-y
Mahawongkajit P, Tomtitchong P. Expression of miRNA in 5-FU resistant esophageal cancer. Mol Clin Oncol 2020;13:221-7. DOI: https://doi.org/10.3892/mco.2020.2070
Meng X, Fu R. miR-206 regulates 5-FU resistance by targeting Bcl-2 in colon cancer cells. Onco Targets Ther 2018;11:1757-65. DOI: https://doi.org/10.2147/OTT.S159093
Wang CQ. MiR-195 reverses 5-FU resistance through targeting HMGA1 in gastric cancer cells. Eur Rev Med Pharmacol Sci 2019;23:3771-8.
Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, et al. MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci 2020;111:1528-41. DOI: https://doi.org/10.1111/cas.14356
Yang Y, Bao Y, Yang GK, Wan J, Du LJ, Ma ZH. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27. Cell Mol Biol Lett 2019;24:22. DOI: https://doi.org/10.1186/s11658-019-0143-3
Fyfe I. MicroRNAs - diagnostic markers in Parkinson disease? Nat Rev Neurol 2020;16:65. DOI: https://doi.org/10.1038/s41582-019-0305-y
Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol 2019;15:731-43. DOI: https://doi.org/10.1038/s41574-019-0260-0
Jung G, Hernandez-Illan E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020;17:111-30. DOI: https://doi.org/10.1038/s41575-019-0230-y
Stower H. An miRNA linked to metabolic disease. Nat Med 2020;26:1677. DOI: https://doi.org/10.1038/s41591-020-1137-4
Jia R, Wang C. MiR-29b-3p reverses cisplatin resistance by targeting COL1A1 in non-small-cell lung cancer A549/DDP cells. Cancer Manag Res 2020;12:2559-66. DOI: https://doi.org/10.2147/CMAR.S246625
Zhao C, Li Y, Hu X, Wang R, He W, Wang L, et al. LncRNA HCP5 promotes cell invasion and migration by sponging miR-29b-3p in human bladder cancer. Onco Targets Ther 2020;13:11827-38. DOI: https://doi.org/10.2147/OTT.S249770
Zhang B, Shetti D, Fan C, Wei K. miR-29b-3p promotes progression of MDA-MB-231 triple-negative breast cancer cells through downregulating TRAF3. Biol Res 2019;52:38. DOI: https://doi.org/10.1186/s40659-019-0245-4
Ding D, Li C, Zhao T, Li D, Yang L, Zhang B. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling. Mol Cells 2018;41:423-35.
Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, et al. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell 2012;23:2635-44. DOI: https://doi.org/10.1091/mbc.e11-09-0805
Gong H, Fang L, Li Y, Du J, Zhou B, Wang X, et al. miR873 inhibits colorectal cancer cell proliferation by targeting TRAF5 and TAB1. Oncol Rep 2018;39:1090-8. DOI: https://doi.org/10.3892/or.2018.6199
Horie R, Watanabe T, Ito K, Morisita Y, Watanabe M, Ishida T, et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells. Am J Pathol 2002;160:1647-54. DOI: https://doi.org/10.1016/S0002-9440(10)61112-1
Liang Z, Li X, Liu S, Li C, Wang X, Xing J. MiR-141-3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem Biophys Res Commun 2019;514:699-705. DOI: https://doi.org/10.1016/j.bbrc.2019.05.002
Chen Z, Zhao L, Zhao F, Yang G, Wang J. MicroRNA-26b regulates cancer proliferation migration and cell cycle transition by suppressing TRAF5 in esophageal squamous cell carcinoma. Am J Transl Res 2016;8:1957-70.

How to Cite

Wu, S., Zhou, Y., Liu, P., Zhang, H., Wang, W., Fang, Y., & Shen, X. (2021). MicroRNA-29b-3p promotes 5-fluorouracil resistance <em>via</em> suppressing TRAF5-mediated necroptosis in human colorectal cancer . European Journal of Histochemistry, 65(2). https://doi.org/10.4081/ejh.2021.3247