Histochemistry for nanomedicine: Novelty in tradition

Submitted: 22 December 2021
Accepted: 23 December 2021
Published: 27 December 2021
Abstract Views: 596
PDF: 323
HTML: 15
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

During the last two centuries, histochemistry has provided significant advancements in many fields of life sciences. After a period of neglect due to the great development of biomolecular techniques, the histochemical approach has been reappraised and is now widely applied in the field of nanomedicine. In fact, the novel nanoconstructs intended for biomedical purposes must be visualized to test their interaction with tissue and cell components. To this aim, several long-established staining methods have been re-discovered and re-interpreted in an unconventional way for unequivocal identification of nanoparticulates at both light and transmission electron microscopy.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

. Raspail FV. [Essai de chimie microscopique appliquée à la physiologie, ou l’art de transporter le laboratoire sur le porte-objet dans l’étude des corps organisés].[Book in French]. Paris: Meilhac; 1830.
Wick MR. Histochemistry as a tool in morphological analysis: a historical review. Ann Diagn Pathol 2012;16:71-8. DOI: https://doi.org/10.1016/j.anndiagpath.2011.10.010
Yadav V, Arif N, Singh VP, Guerriero G, Berni R, Shinde S, et al. Histochemical techniques in plant science: More than meets the eye. Plant Cell Physiol 2021;62:1509-27. DOI: https://doi.org/10.1093/pcp/pcab022
Coleman R. Histochemistry in the new millennium: a time to change our terminology? Acta Histochem 2000;102:241-6. DOI: https://doi.org/10.1078/S0065-1281(04)70032-X
Pellicciari C, Biggiogera M. Histochemistry of single molecules. New York: Springer; 2017. DOI: https://doi.org/10.1007/978-1-4939-6788-9
Coleman R. The impact of histochemistry - A historical perspective. Acta Histochem 2000;102:5-14. DOI: https://doi.org/10.1078/0065-1281-00542
Perls M. [Nachweis von Eisenoxyd in gewissen Pigmenten].[Article in German]. Virchows Arch Path Anat 1867;39:42-8. DOI: https://doi.org/10.1007/BF01878983
Daddi L. [Nouvelle méthode pour colorer la graisse dans les tissues].[Article in French]. Arch Ital Biol 1896;26:143-6.
McManus JFA. Histological and histochemical uses of periodic acid. Stain Technology 1948;23:99-108. DOI: https://doi.org/10.3109/10520294809106232
von Kossa J. [Über die im Organismus künstlich erzeugbaren Verkalkungen].[Article in German]. Beitr Path Anat 1901;29:163-202.
Carton F, Calderan L, Malatesta M. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles. Eur J Histochem 2017;61:2862. DOI: https://doi.org/10.4081/ejh.2017.2862
Khan A, Waqar K, Shafique A, Irfan R, Gul A. In vitro and in vivo animal models: The engineering towards understanding human diseases and therapeutic interventions. In: Barh D, Azevedo V, editors. Omics technologies and bio-engineering towards improving quality of life. Cambridge: Academic Press; 2017. p. 431-48. DOI: https://doi.org/10.1016/B978-0-12-804659-3.00018-X
Segeritz CP, Vallier L. Cell culture: Growing cells as model systems in vitro. In: Jalali M, Saldanha FYL, Jalali M, editors. Basic science methods for clinical researchers. Amsterdam: Elsevier; 2017. p. 151-72. DOI: https://doi.org/10.1016/B978-0-12-803077-6.00009-6
Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol 2020;319:C151-65. DOI: https://doi.org/10.1152/ajpcell.00120.2020
Cappellozza E, Zanzoni S, Malatesta M, Calderan L. integrated microscopy and metabolomics to test an innovative fluid dynamic system for skin explants in vitro. Microsc Microanal 2021;27:923-34. DOI: https://doi.org/10.1017/S1431927621012010
Maranto AR. Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 1982;217:953-5. DOI: https://doi.org/10.1126/science.7112109
Malatesta M, Giagnacovo M, Costanzo M, Conti B, Genta I, Dorati R, et al. Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy. Eur J Histochem 2012;56:e20. DOI: https://doi.org/10.4081/ejh.2012.20
Malatesta M, Zancanaro C, Costanzo M, Cisterna B, Pellicciari C. Simultaneous ultrastructural analysis of fluoro-chrome-photoconverted diaminobenzidine and gold immunolabelling in cultured cells. Eur J Histochem 2013;57:e26. DOI: https://doi.org/10.4081/ejh.2013.e26
Malatesta M, Pellicciari C, Cisterna B, Costanzo M, Galimberti V, Biggiogera M, et al. Tracing nanoparticles and photosensitizing molecules at transmission electron microscopy by diaminobenzidine photo-oxidation. Micron 2014;59:44-51. DOI: https://doi.org/10.1016/j.micron.2013.12.007
Malatesta M, Grecchi S, Chiesa E, Cisterna B, Costanzo M, Zancanaro C. Internalized chitosan nanoparticles persist for long time in cultured cells. Eur J Histochem 2015;59:2492. DOI: https://doi.org/10.4081/ejh.2015.2492
Costanzo M, Scolaro L, Berlier G, Marengo A, Grecchi S, Zancanaro C, et al. Cell uptake and intracellular fate of phospholipidic manganese-based nanoparticles. Int J Pharm 2016;508:83-91. DOI: https://doi.org/10.1016/j.ijpharm.2016.05.019
Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci 2021;22:12789. DOI: https://doi.org/10.3390/ijms222312789
Stelter L, Pinkernelle JG, Michel R, Schwartländer R, Raschzok N, Morgul MH, et al. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 2010;12:25-34. DOI: https://doi.org/10.1007/s11307-009-0237-9
van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009;30:52-7. DOI: https://doi.org/10.1016/j.biomaterials.2008.09.044
Bumb A, Regino CA, Egen JG, Bernardo M, Dobson PJ, Germain RN, et al. Trafficking of a dual-modality magnetic resonance and fluorescence imaging superparamagnetic iron oxide-based nanoprobe to lymph nodes. Mol Imaging Biol 2011;13:1163-72. DOI: https://doi.org/10.1007/s11307-010-0424-8
van Tilborg GA, Cormode DP, Jarzyna PA, van der Toorn A, van der Pol SM, van Bloois L, et al. Nanoclusters of iron oxide: effect of core composition on structure, biocompatibility, and cell labeling efficacy. Bioconjug Chem 2012;23:941-50. DOI: https://doi.org/10.1021/bc200543k
Tefft BJ, Uthamaraj S, Harbuzariu A, Harburn JJ, Witt TA, Newman B, et al. Nanoparticle-mediated cell capture enables rapid endothelialization of a novel bare metal stent. Tissue Eng Part A 2018;24:1157-66. DOI: https://doi.org/10.1089/ten.tea.2017.0404
Ring HL, Gao Z, Sharma A, Han Z, Lee C, Brockbank KGM, et al. Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues. Magn Reson Med 2020;83:1750-9. DOI: https://doi.org/10.1002/mrm.28123
Frank JA, Kalish H, Jordan EK, Anderson SA, Pawelczyk E, Arbab AS. Color transformation and fluorescence of Prussian blue-positive cells: implications for histologic verification of cells labeled with superparamagnetic iron oxide nanoparticles. Mol Imaging 2007;6:212-8. DOI: https://doi.org/10.2310/7290.2007.00014
Rayavarapu RG, Petersen W, Ungureanu C, Post JN, van Leeuwen TG, Manohar S. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int J Biomed Imag 2007;2007:29817. DOI: https://doi.org/10.1155/2007/29817
Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010;4:3689-96. DOI: https://doi.org/10.1021/nn901877h
Centi S, Tatini F, Ratto F, Gnerucci A, Mercatelli R, Romano G, et al. In vitro assessment of antibody-conjugated gold nanorods for systemic injections. J Nanobiotechnology 2014;12:55. DOI: https://doi.org/10.1186/s12951-014-0055-3
Heidari Z, Sariri R, Salouti M. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobiol B 2014;130:40-6. DOI: https://doi.org/10.1016/j.jphotobiol.2013.10.019
Schofield BH, Williams BR, Doty SB. Alcian Blue staining of cartilage for electron microscopy. Application of the critical electrolyte concentration principle. Histochem J 1975;7:139-49. DOI: https://doi.org/10.1007/BF01004558
Carton F, Chevalier Y, Nicoletti L, Tarnowska M, Stella B, Arpicco S, et al. Rationally designed hyaluronic acid-based nano-complexes for pentamidine delivery. Int J Pharm 2019;568:118526. DOI: https://doi.org/10.1016/j.ijpharm.2019.118526
Carton F, Repellin M, Lollo G, Malatesta M. Alcian blue staining to track the intracellular fate of hyaluronic-acid-based nanoparticles at transmission electron microscopy. Eur J Histochem 2019;63:3086. DOI: https://doi.org/10.4081/ejh.2019.3086
Holzhausen C, Gröger D, Mundhenk L, Welker P, Haag R, Gruber AD. Tissue and cellular localization of nanoparticles using 35S labeling and light microscopic autoradiography. Nanomedicine 2013;9:465-8. DOI: https://doi.org/10.1016/j.nano.2013.02.003
Khan AA, Riemersma JC, Booij HL. The reactions of osmium tetroxide with lipids and other compounds. J Histochem Cytochem 1961;9:560-3. DOI: https://doi.org/10.1177/9.5.560
Korn ED. A chromatographic and spectrophotometric study of the products of the reaction of osmium tetroxide with un-saturated lipids. J Cell Biol 1967;34:627-38. DOI: https://doi.org/10.1083/jcb.34.2.627
Bello V, Giovanni G, Mazzoldi P, Vivenza N, Gasco P, Idee JM, et al. Transmission electron microscopy of lipid vesicles for drug delivery: comparison between positive and negative staining. Microsc Microanal 2010;16:456-61. DOI: https://doi.org/10.1017/S1431927610093645
Costanzo M, Carton F, Marengo A, Berlier G, Stella B, Arpicco S, et al. Fluorescence and electron microscopy to visualize the intracellular fate of nanoparticles for drug delivery. Eur J Histochem 2016;60:2640. DOI: https://doi.org/10.4081/ejh.2016.2640
Costanzo M, Malatesta M. Embedding cell monolayers to investigate nanoparticle-plasmalemma interactions at transmission electron microscopy. Eur J Histochem 2019;63:3026. DOI: https://doi.org/10.4081/ejh.2019.3026
Costanzo M, Esposito E, Sguizzato M, Lacavalla MA, Drechsler M, Valacchi G, et al. Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery. Int J Mol Sci 2021;22:5341. DOI: https://doi.org/10.3390/ijms22105341
Sguizzato M, Ferrara F, Hallan SS, Baldisserotto A, Drechsler M, Malatesta M, et al. Ethosomes and transethosomes for mangiferin transdermal delivery. Antioxidants (Basel) 2021;10:768. DOI: https://doi.org/10.3390/antiox10050768
Mousseau F, Berret JF, Oikonomou EK. Design and applications of a fluorescent labeling technique for lipid and surfactant preformed vesicles. ACS Omega 2019;4:10485-93. DOI: https://doi.org/10.1021/acsomega.9b01094
Syed AM, MacMillan P, Ngai J, Wilhelm S, Sindhwani S, Kingston BR, et al. Liposome imaging in optically cleared tissues. Nano Lett 2020;20:1362-9. DOI: https://doi.org/10.1021/acs.nanolett.9b04853
Huang J, Hou Y, Ma T, Zhang P, Li Y, Liu C, et al. A Novel histochemical staining approach for rare-earth-based nanoprobes. Adv Therap 2018;1:1800005. DOI: https://doi.org/10.1002/adtp.201800005
Cartier R, Velinova M, Lehman C, Erdmann B, Reszka R. Ultrastructural analysis of DNA complexes during transfection and intracellular transport. J Histochem Cytochem 2003;51:1237-40. DOI: https://doi.org/10.1177/002215540305100914
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, et al. Identification and charac-terization of the nano-sized vesicles released by muscle cells. FEBS Lett 2013;587:1379-84. DOI: https://doi.org/10.1016/j.febslet.2013.03.012
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun 2019;10:3288. DOI: https://doi.org/10.1038/s41467-019-11182-0
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 2020;10:5979-97. DOI: https://doi.org/10.7150/thno.40122
Malatesta M, Galimberti V, Cisterna B, Costanzo M, Biggiogera M, Zancanaro C. Chitosan nanoparticles are efficient carriers for delivering biodegradable drugs to neuronal cells. Histochem Cell Biol 2014;141:551-8. DOI: https://doi.org/10.1007/s00418-013-1175-9

How to Cite

Malatesta, M. (2021). Histochemistry for nanomedicine: Novelty in tradition. European Journal of Histochemistry, 65(4). https://doi.org/10.4081/ejh.2021.3376

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
57%
33%
Days to publication 
4
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A