Articles

Low ozone concentrations promote in vitro preservation of explanted articular cartilage: an ultrastructural study

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 26 January 2026
29
Views
13
Downloads

Authors

Ozone (O3) is an oxidizing natural gas widely applied as adjunctive therapeutic treatment for a variety of pathological conditions. Currently, O3-based therapies rely on the low-dose concept i.e., the administration of low O3 concentrations able to induce a mild oxidative stress stimulating antioxidant and anti-inflammatory response without causing cell damage. In addition, low O3 concentrations are thought to activate cellular and molecular mechanisms responsible for analgesic and regenerative effects. Due to these properties, in the last decade interest has arisen in the fields of orthopedics and regenerative medicine on the potential of O3 to counteract joint diseases involving cartilage degeneration. In this pilot study, we have explored the anti-degenerative potential of O3 on knee articular cartilage explanted from a healthy adult rabbit and maintained in vitro. Light and transmission electron microscopy were used to monitor chondrocyte and extracellular matrix features of cartilage samples undergoing O3 treatment every three days for two weeks. Results demonstrated that low O3 concentrations act on chondrocytes and the molecular components of the extracellular matrix of articular cartilage explants, significantly improving their preservation under in vitro conditions, likely by promoting both protective and pro-regenerative pathways. This opens promising perspectives for further investigations on the therapeutic potential of O3 for the treatment of cartilage degeneration not only as painkilling and anti-inflammatory agent but also as a cartilage regenerative agent.

Downloads

Download data is not yet available.

Citations

1. Schönbein CF. Ueber des Verhalten einiger organischer Materien zum Ozon. J Prakt Chem 1868;105:230-2. DOI: https://doi.org/10.1002/prac.18681050128
2. Schönbein CF. On some secondary physiological effects produced by atmospheric electricity. Med Chir Trans 1851;34:205-20. DOI: https://doi.org/10.1177/095952875103400117
3. Fox CB. Ozone and antozone, their history and nature when, where, why, how is ozone observed in the atmosphere? London, J & A Churchill; 1873. DOI: https://doi.org/10.1097/00000441-187413300-00031
4. Kellogg JH. Diphtheria: its causes, prevention, and proper treatment. Battle Creek, Good Health Publishing Co.; 1879.
5. Bocci V, Zanardia I, Valacchi G, Borrelli E, Travagli V. Validity of oxygen-ozone therapy as integrated medication form in chronic inflammatory diseases. Cardiovasc Hematol Disord Drug Targets 2015;15:127-38. DOI: https://doi.org/10.2174/1871529X1502151209114642
6. Sciorsci RL, Lillo E, Occhiogrosso L, Rizzo A. Ozone therapy in veterinary medicine: A review. Res Vet Sci 2020;130:240-6. DOI: https://doi.org/10.1016/j.rvsc.2020.03.026
7. Masan J, Sramka M, Rabarova D. The possibilities of using the effects of ozone therapy in neurology. Neuro Endocrinol Lett 2021;42:13-21.
8. Oliveira Modena DA, de Castro Ferreira R, Froes PM, Rocha KC. Ozone therapy for dermatological conditions: a systematic review. J Clin Aesthet Dermatol 2022;15:65-73.
9. Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Nallakumarasamy A, Patro BP, Migliorini F. Ozone therapy in musculoskeletal medicine: a comprehensive review. Eur J Med Res 2024;29:398. DOI: https://doi.org/10.1186/s40001-024-01976-4
10. Hidalgo-Tallón FJ, Torres-Morera LM, Baeza-Noci J, Carrillo-Izquierdo MD, Pinto-Bonilla R. Updated review on ozone therapy in pain medicine. Front Physiol 2022;13:840623. DOI: https://doi.org/10.3389/fphys.2022.840623
11. El Meligy OA, Elemam NM, Talaat IM. Ozone therapy in medicine and dentistry: a review of the literature. Dent J 2023;11:187. DOI: https://doi.org/10.3390/dj11080187
12. Liu L, Zeng L, Gao L, Zeng J, Lu J. Ozone therapy for skin diseases: cellular and molecular mechanisms. Int Wound J 2023;20:2376-85. DOI: https://doi.org/10.1111/iwj.14060
13. Veneri F, Filippini T, Consolo U, Vinceti M, Generali L. Ozone therapy in dentistry: an overview of the biological mechanisms involved (Review). Biomed Rep 2024;21:115. DOI: https://doi.org/10.3892/br.2024.1803
14. Ghatge SB, Asarkar A, Warghade SS, Shirsat S, Deb A. Ozone disc nucleolysis for cervical intervertebral disc herniation: a systematic review and meta-analysis. Cureus 2024;16:e59855. DOI: https://doi.org/10.7759/cureus.59855
15. Izadi M, Jafari-Oori M, Eftekhari Z, Jafari NJ, Maybodi MK, Heydari S, et al. Effect of ozone therapy on diabetes-related foot ulcer outcomes: a systematic review and meta-analysis. Curr Pharm Des 2024;30:2152-66. DOI: https://doi.org/10.2174/0113816128302890240521065453
16. Liu J, Huang Y, Huang J, Yang W, Tao R. Effects of ozone therapy as an adjuvant in the treatment of periodontitis: a systematic review and meta-analysis. BMC Oral Health 2025;25:335. DOI: https://doi.org/10.1186/s12903-025-05639-6
17. Machado TT, Machado ACS, Poluha RL, Proença LS, Christidis N, Parada CA, et al. The role of ozone therapy in the treatment of temporomandibular disorders: a systematic review. J Evid Based Dent Pract 2025;25:102127. DOI: https://doi.org/10.1016/j.jebdp.2025.102127
18. Ronconi G, Mariantonietta A, Codazza S, Cutaia A, Zeni A, Forastiere L, et al. Effects of oxygen-ozone injections in upper limb disorders: scoping review. J Clin Med 2025;14:2452. DOI: https://doi.org/10.3390/jcm14072452
19. Viebahn-Hänsler R, León Fernández OS, Fahmy Z. Ozone in medicine: the low-dose ozone concept—guidelines and treatment strategies. Ozone-Sci Eng 2012;34:408-24. DOI: https://doi.org/10.1080/01919512.2012.717847
20. Sagai M, Bocci V. Mechanisms of action involved in ozone therapy: is healing induced via a mild oxidative stress? Med Gas Res 2011;1:29. DOI: https://doi.org/10.1186/2045-9912-1-29
21. Niki E. Oxidative stress and antioxidants: distress or eustress? Arch Biochem Biophys 2016;595:19-24. DOI: https://doi.org/10.1016/j.abb.2015.11.017
22. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 2017;11:613-9. DOI: https://doi.org/10.1016/j.redox.2016.12.035
23. Bocci V, Aldinucci C, Mosci F, Carraro F, Valacchi G. Ozonation of human blood induces a remarkable upregulation of heme oxygenase-1 and heat stress protein-70. Mediators Inflamm 2007;2007:26785. DOI: https://doi.org/10.1155/2007/26785
24. Pecorelli A, Bocci V, Acquaviva A, Belmonte G, Gardi C, Virgili F, et al. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol Appl Pharmacol. 2013;267:30-40. DOI: https://doi.org/10.1016/j.taap.2012.12.001
25. Scassellati C, Costanzo M, Cisterna B, Nodari A, Galiè M, Cattaneo A, et al. Effects of mild ozonisation on gene expression and nuclear domains organization in vitro. Toxicol In Vitro 2017;44:100-10. DOI: https://doi.org/10.1016/j.tiv.2017.06.021
26. Re L, Martínez-Sánchez G, Bordicchia M, Malcangi G, Pocognoli A, Morales-Segura MA, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol 2014;742:158-62. DOI: https://doi.org/10.1016/j.ejphar.2014.08.029
27. Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018;124:114-21. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.05.093
28. Malatesta M, Tabaracci G, Pellicciari C. Low-dose ozone as a eustress inducer: experimental evidence of the molecular mechanisms accounting for its therapeutic action. Int J Mol Sci 2024;25:12657. DOI: https://doi.org/10.3390/ijms252312657
29. Schenk RK, Eggli PS, Hunziker EB. Articular cartilage morphology. In: Kuettner KE, Schleyerbach R, Hascall V, eds. Articular cartilage biochemistry. New York, Raven Press;1986. pp. 3-22.
30. Knudson W, Aguiar DJ, Hua Q, Knudson CB. CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis. Exp Cell Res 1996;228:216-28. DOI: https://doi.org/10.1006/excr.1996.0320
31. Poole CA. Articular cartilage chondrons: form, function and failure. J Anat 1997;191:1-13. DOI: https://doi.org/10.1046/j.1469-7580.1997.19110001.x
32. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci 2006;1068:498-512. DOI: https://doi.org/10.1196/annals.1346.011
33. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009;1:461-8. DOI: https://doi.org/10.1177/1941738109350438
34. Raeissadat SA, Tabibian E, Rayegani SM, Rahimi-Dehgolan S, Babaei-Ghazani A. An investigation into the efficacy of intra-articular ozone (O2-O3) injection in patients with knee osteoarthritis: a systematic review and meta-analysis. J Pain Res 2018;11:2537-50. DOI: https://doi.org/10.2147/JPR.S175441
35. Latini E, Curci ER, Nusca SM, Lacopo A, Musa F, Santoboni F, et al. Medical ozone therapy in facet joint syndrome: an overview of sonoanatomy, ultrasound-guided injection techniques and potential mechanism of action. Med Gas Res 2021;11:145-51. DOI: https://doi.org/10.4103/2045-9912.318859
36. Lino VTS, Marinho DS, Rodrigues NCP, Andrade CAF. Efficacy and safety of ozone therapy for knee osteoarthritis: an umbrella review of systematic reviews. Front Physiol 2024;15:1348028. DOI: https://doi.org/10.3389/fphys.2024.1348028
37. Yao TK, Lee RP, Wu WT, Chen IH, Yu TC, Yeh KT. Advances in gouty arthritis management: integration of established therapies, emerging treatments, and lifestyle interventions. Int J Mol Sci 2024;25:10853. DOI: https://doi.org/10.3390/ijms251910853
38. Farì G, Fai A, Donati D, Tedeschi R, Varrassi G, Ricci V, et al. The effects of oxygen-ozone therapy in knee osteoarthritis: a systematic review. J Back Musculoskelet Rehabil 2025;38:1257-66. DOI: https://doi.org/10.1177/10538127251341834
39. Rahimzadeh P, Imani F, Azad Ehyaei D, Faiz SHR. Efficacy of oxygen-ozone therapy and platelet-rich plasma for the treatment of knee osteoarthritis: a meta-analysis and systematic review. Anesth Pain Med 2022;12:e127121. DOI: https://doi.org/10.5812/aapm-127121
40. Liu Q, Liu J, Cao G, Liu Y, Huang Y, Jiang X. Ozone therapy for knee osteoarthritis: a literature visualization analysis of research hotspots and prospects. Med Gas Res 2025;15:356-65. DOI: https://doi.org/10.4103/mgr.MEDGASRES-D-24-00099
41. Javadi Hedayatabad J, Kachooei AR, Taher Chaharjouy N, Vaziri N, Mehrad-Majd H, Emadzadeh M, et al. The effect of ozone (O3) versus hyaluronic acid on pain and function in patients with knee osteoarthritis: a systematic review and meta-analysis. Arch Bone Jt Surg 2020;8:343-54.
42. Zhao X, Li Y, Lin X, Wang J, Zhao X, Xie J, et al. Ozone induces autophagy in rat chondrocytes stimulated with IL-1β through the AMPK/mTOR signaling pathway. J Pain Res 2018;11:3003-17. DOI: https://doi.org/10.2147/JPR.S183594
43. Tartari APS, Moreira FF, Pereira MCDS, Carraro E, Cidral-Filho FJ, Salgado AI, Kerppers II. Anti-inflammatory effect of ozone therapy in an experimental model of rheumatoid arthritis. Inflammation 2020;43:985-93. DOI: https://doi.org/10.1007/s10753-020-01184-2
44. Xu W, Zhao X, Sun P, Zhang C, Fu Z, Zhou D. The effect of medical ozone treatment on cartilage chondrocyte autophagy in a rat model of osteoarthritis. Am J Transl Res 2020;12:5967-76.
45. Sun P, Xu W, Zhao X, Zhang C, Lin X, Gong M, Fu Z. Ozone induces autophagy by activating PPARγ/mTOR in rat chondrocytes treated with IL-1β. J Orthop Surg Res 2022;17:351. DOI: https://doi.org/10.1186/s13018-022-03233-y
46. Yılmaz O, Bilge A, Erken HY, Kuru T. The effects of systemic ozone application and hyperbaric oxygen therapy on knee osteoarthritis: an experimental study in rats. Int Orthop 2021;45:489-96. DOI: https://doi.org/10.1007/s00264-020-04871-9
47. Spassim MR, Dos Santos RT, Rossato-Grando LG, Cardoso L, da Silva JS, de Souza SO, et al. Intra-articular ozone slows down the process of degeneration of articular cartilage in the knees of rats with osteoarthritis. Knee 2022;35:114-23. DOI: https://doi.org/10.1016/j.knee.2022.03.003
48. Unlu E, Gül Satar NY, Onguncan O, Güler S, Uslu N, Ukum MO. Chondroprotective effects of ozone and hyaluronic acid in rat knee osteoarthritis: comparison of intra-articular and systemic administration. Res Vet Sci 2025;193:105798. DOI: https://doi.org/10.1016/j.rvsc.2025.105798
49. Cisterna B, Costanzo M, Nodari A, Galiè M, Zanzoni S, Bernardi P, et al. Ozone activates the nrf2 pathway and improves preservation of explanted adipose tissue in vitro. Antioxidants (Basel) 2020;9:989. DOI: https://doi.org/10.3390/antiox9100989
50. Larini A, Bianchi L, Bocci V. The ozone tolerance: I) Enhancement of antioxidant enzymes is ozone dose-dependent in Jurkat cells. Free Radic Res 2003;37:1163-8. DOI: https://doi.org/10.1080/10715760310001604170
51. Ortiz-Arrabal O, Carmona R, García-García ÓD, Chato-Astrain J, Sánchez-Porras D, Domezain A, et al. Generation and evaluation of novel biomaterials based on decellularized sturgeon cartilage for use in tissue engineering. Biomedicines 2021;9:775. DOI: https://doi.org/10.3390/biomedicines9070775
52. Darwiche SE, Tegelkamp M, Nuss K, von Rechenberg B. Histological preparation and evaluation of cartilage specimens. Methods Mol Biol 2023;2598:227-63. DOI: https://doi.org/10.1007/978-1-0716-2839-3_17
53. Nishida T, Kubota S, Aoyama E, Takigawa M. Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthritis Cartilage 2013;21:700-9. DOI: https://doi.org/10.1016/j.joca.2013.01.013
54. Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP. Form and function of articular cartilage. In: Simon SR, ed. Orthopaedic basic science. Columbus, American Academy of Orthopaedic Surgeons; 1994. pp. 1-44.
55. Lane JM, Brighton CT, Menkowitz BJ. Anaerobic and aerobic metabolism in articular cartilage. J Rheumatol 1977;4:334-42
56. Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol 2024;15:1319827. DOI: https://doi.org/10.3389/fendo.2024.1319827
57. Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992;48:158-72. DOI: https://doi.org/10.1007/BF01923509
58. Dunn WA Jr. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 1994;4:139-43. DOI: https://doi.org/10.1016/0962-8924(94)90069-8
59. Yu J, Liu Q, Zhang Y, Xu L, Chen X, He F, et al. Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules. Osteoarthritis Cartilage 2025;33:351-63. DOI: https://doi.org/10.1016/j.joca.2024.08.015
60. Mei Z, Yilamu K, Ni W, Shen P, Pan N, Chen H, et al. Chondrocyte fatty acid oxidation drives osteoarthritis via SOX9 degradation and epigenetic regulation. Nat Commun 2025;16:4892. DOI: https://doi.org/10.1038/s41467-025-60037-4
61. Knudson W, Ishizuka S, Terabe K, Askew EB, Knudson CB. The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2019;78-79:32-46. DOI: https://doi.org/10.1016/j.matbio.2018.02.005
62. Wu H, Wang J, Lin Y, He W, Hou J, Deng M, et al. Injectable ozone-rich nanocomposite hydrogel loaded with d-mannose for anti-inflammatory and cartilage protection in osteoarthritis treatment. Small 2024;20:e2309597. DOI: https://doi.org/10.1002/smll.202309597
63. Asadi S, Farzanegi P, Azarbayjani MA. Combined therapies with exercise, ozone and mesenchymal stem cells improve the expression of HIF1 and SOX9 in the cartilage tissue of rats with knee osteoarthritis. Physiol Int 2020;107:231-42. DOI: https://doi.org/10.1556/2060.2020.00024
64. Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014;39:25-32. DOI: https://doi.org/10.1016/j.matbio.2014.08.009
65. Shao J, Lin L, Tang B, Du C. Structure and nanomechanics of collagen fibrils in articular cartilage at different stages of osteoarthritis. RSC Adv 2014;4:51165-70 DOI: https://doi.org/10.1039/C4RA08997A
66. Maniwa S, Maeki N, Ishihara H, Takami Y, Tadenuma T, Sakai Y. Diameter of collagen fibrils in the superficial layer of osteoarthritic articular cartilage from different species. Osteoarthr Cartil 2019;27:S148-9 DOI: https://doi.org/10.1016/j.joca.2019.02.217
67. Gottardi R, Hansen U, Raiteri R, Loparic M, Düggelin M, Mathys D, et al. Supramolecular organization of collagen fibrils in healthy and osteoarthritic human knee and hip joint cartilage. PLoS One 2016;11:e0163552. DOI: https://doi.org/10.1371/journal.pone.0163552
68. Tiku ML, Gupta S, Deshmukh DR. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radic Res 1999;30:395-405. DOI: https://doi.org/10.1080/10715769900300431
69. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed Pharmacother 2020;129:110452. DOI: https://doi.org/10.1016/j.biopha.2020.110452
70. Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol 2015;11:521-9. DOI: https://doi.org/10.1038/nrrheum.2015.70
71. Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 2017;1401:114-35. DOI: https://doi.org/10.1111/nyas.13407
72. Huang P, Wang R, Pang X, Yang Y, Guan Y, Zhang D. Platelet-rich plasma combined with ozone prevents cartilage destruction and improves weight-bearing asymmetry in a surgery-induced osteoarthritis rabbit model. Ann Palliat Med 2022;11:442–51. DOI: https://doi.org/10.21037/apm-21-1510
73. Shinmei M, Masuda K, Kikuchi T, Shimomura Y, Okada Y. Production of cytokines by chondrocytes and its role in proteoglycan degradation. J Rheumatol Suppl 1991;27:89-91.
74. Aslan SG, de Sire A, Köylü SU, Tezen Ö, Atar MÖ, Korkmaz N, et al. The efficacy of ultrasonography-guided oxygen-ozone therapy versus corticosteroids in patients with knee osteoarthritis: a multicenter randomized controlled trial. J Back Musculoskelet Rehabil 2024;37:1455-66. DOI: https://doi.org/10.3233/BMR-240023
75. Babaei-Ghazani A, Najarzadeh S, Mansoori K, Forogh B, Madani SP, Ebadi S, et al. The effects of ultrasound-guided corticosteroid injection compared to oxygen-ozone (O2-O3) injection in patients with knee osteoarthritis: a randomized controlled trial. Clin Rheumatol 2018;37:2517-27. DOI: https://doi.org/10.1007/s10067-018-4147-6
76. Babaei-Ghazani A, Eftekharsadat B, Soleymanzadeh H, ZoghAli M. Ultrasound-guided pes anserine bursitis injection choices: prolotherapy or oxygen-ozone or corticosteroid: a randomized multicenter clinical trial. Am J Phys Med Rehabil 2024;103:310-7. DOI: https://doi.org/10.1097/PHM.0000000000002343
77. Ding JB, Hu K. Injectable therapies for knee osteoarthritis. Reumatologia 2021;59:330-9. DOI: https://doi.org/10.5114/reum.2021.110612
78. Raeissadat SA, Rayegani SM, Forogh B, Hassan Abadi P, Moridnia M, Rahimi Dehgolan S. Intra-articular ozone or hyaluronic acid injection: which one is superior in patients with knee osteoarthritis? A 6-month randomized clinical trial. J Pain Res 2018;11:111-7. DOI: https://doi.org/10.2147/JPR.S142755
79. Sconza C, Di Matteo B, Queirazza P, Dina A, Amenta R, Respizzi S, et al. Ozone therapy versus hyaluronic acid injections for pain relief in patients with knee osteoarthritis: preliminary findings on molecular and clinical outcomes from a randomized controlled trial. Int J Mol Sci 2023;24:8788. DOI: https://doi.org/10.3390/ijms24108788
80. Migliorini F, Giorgino R, Mazzoleni MG, Schäfer L, Bertini FA, Maffulli N. Intra-articular injections of ozone versus hyaluronic acid for knee osteoarthritis: a level I meta-analysis. Eur J Orthop Surg Traumatol 2024;35:20. DOI: https://doi.org/10.1007/s00590-024-04135-x
81. Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN. Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc 2017;25:485-92. DOI: https://doi.org/10.1007/s00167-016-4110-5
82. de Sire A, Stagno D, Minetto MA, Cisari C, Baricich A, Invernizzi M. Long-term effects of intra-articular oxygen-ozone therapy versus hyaluronic acid in older people affected by knee osteoarthritis: A randomized single-blind extension study. J Back Musculoskelet Rehabil 2020;33:347-54. DOI: https://doi.org/10.3233/BMR-181294
83. Raeissadat SA, Ghazi Hosseini P, Bahrami MH, Salman Roghani R, Fathi M, Gharooee Ahangar A, Darvish M. The comparison effects of intra-articular injection of Platelet Rich Plasma (PRP), Plasma Rich in Growth Factor (PRGF), Hyaluronic Acid (HA), and ozone in knee osteoarthritis; a one year randomized clinical trial. BMC Musculoskelet Disord 2021;22:134. DOI: https://doi.org/10.1186/s12891-021-04017-x
84. Sconza C, Parente A, Marotta N, Farì G, Scaturro D, Vecchio M, et al. Intra-articular injections of oxygen-ozone versus hyaluronic acid for the treatment of knee osteoarthritis: a randomized controlled trial. J Back Musculoskelet Rehabil 2025:10538127251358732. DOI: https://doi.org/10.1177/10538127251358732
85. Giombini A, Menotti F, Di Cesare A, Giovannangeli F, Rizzo M, Moffa S, Martinelli F. Comparison between intrarticular injection of hyaluronic acid, oxygen ozone, and the combination of both in the treatment of knee osteoarthrosis. J Biol Regul Homeost Agents 2016;30:621-5.
86. Silva Júnior JIS, Rahal SC, Santos IFC, Martins DJC, Michelon F, Mamprim MJ, et al. Use of reticulated hyaluronic acid alone or associated with ozone gas in the treatment of osteoarthritis due to hip dysplasia in dogs. Front Vet Sci 2020;7:265. DOI: https://doi.org/10.3389/fvets.2020.00265
87. Akhavanakbari G, Asayeshi M, Noktehsanj R, Aslani MR. Comparing the efficacy of combining ozone therapy with hyaluronic acid versus using hyaluronic acid alone for pain relief in patients with knee osteoarthritis: A randomized clinical trial. Complement Ther Med 2025;93:103238. DOI: https://doi.org/10.1016/j.ctim.2025.103238
88. Latini E, Nusca SM, Curci ER, Lacopo A, Di Stasi V, Santoboni F, et al. Ozone and hyaluronic acid, alone and in combination: exploring temporal dynamics and synergies in intraarticular therapy for knee osteoarthritis. Pain Physician 2025;28:347-57.
89. Cömert Kiliç S, Babayev U, Kiliç N. Is intra-articular injection of hyaluronic acid, corticosteroid or platelet-rich plasma following medical ozone superior to medical ozone alone in the treatment of temporomandibular joint osteoarthritis? J Oral Maxillofac Surg 2025;83:1068-77. DOI: https://doi.org/10.1016/j.joms.2025.05.009

CRediT authorship contribution

Giada Remoli, data acquisition and analysis, manuscript drafting; Chiara Rita Inguscio, data acquisition and analysis; Federico Boschi, data analysis, statistics and interpretation; Gabriele Tabaracci, conception of the work, manuscript reviewing; Manuela Malatesta, design of the work, data analysis, manuscript drafting and reviewing; Barbara Cisterna, design of the work, data analysis, manuscript drafting and reviewing. All authors read and approved the final version of the manuscript and agreed to be accountable for all aspects of the work.

Data Availability Statement

The datasets used and/or analyzed during the current study are available upon reasonable request from the corresponding author.

How to Cite



1.
Remoli G, Inguscio CR, Boschi F, Tabaracci G, Malatesta M, Cisterna B. Low ozone concentrations promote in vitro preservation of explanted articular cartilage: an ultrastructural study. Eur J Histochem [Internet]. 2026 Jan. 26 [cited 2026 Jan. 27];70(1). Available from: https://www.ejh.it/ejh/article/view/4440