Articles

Targeting EphA2 suppresses the proliferation, migration and invasion of endometriosis via the AMPK signaling pathway

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 17 June 2025
379
Views
193
Downloads
10
HTML

Authors

Endometriosis is a benign disease with similar characteristics to tumors. Recent studies have found that the erythropoietin-producing hepatoma receptor A2 (EphA2) has the dual effect of promoting tumor and inhibiting tumor. The objective of this study was to explore the specific regulatory mechanism of EphA2 in endometriosis. The expression level of Eph protein family in endometriosis was analyzed by bioinformatics method. At the clinical level, qPCR, Western blot and immunohistochemistry were used to verify the correlation between increased EphA2 levels and endometriosis. The effects of blocking EphA2 on cell migration, invasion, proliferation and apoptosis of primary eutopic endometriotic stromal cells were explored in vitro. Our study indicated that EphA2 expression was elevated in endometriosis patients, and blocking EphA2 in vitro inhibited cell proliferation, migration and invasion through AMPK signaling pathway. Targeting EphA2 can inhibit the progression of endometriosis through the AMPK signaling pathway.

Downloads

Download data is not yet available.

Citations

1. Allaire C, Bedaiwy MA, Yong PJ. Diagnosis and management of endometriosis. CMAJ 2023;195:E363-71. DOI: https://doi.org/10.1503/cmaj.220637
2. Chapron C, Marcellin L, Borghese B, Santulli P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol 2019;15:666-82. DOI: https://doi.org/10.1038/s41574-019-0245-z
3. Saunders PTK, Horne AW. Endometriosis: Etiology, pathobiology, and therapeutic prospects. Cell 2021;184:2807-24. DOI: https://doi.org/10.1016/j.cell.2021.04.041
4. Liang L-Y, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019;38:6567-84. DOI: https://doi.org/10.1038/s41388-019-0931-2
5. Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicol 2015;55:465–87. DOI: https://doi.org/10.1146/annurev-pharmtox-011112-140226
6. Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020;13:114. DOI: https://doi.org/10.1186/s13045-020-00944-9
7. Hudecek R, Kohlova B, Siskova I, Piskacek M, Knight A. Blocking of EphA2 on endometrial tumor cells reduces susceptibility to Vδ1 gamma-delta t-cell-mediated killing. Front Immunol 2021;12:752646. DOI: https://doi.org/10.3389/fimmu.2021.752646
8. Madasu C, Liao Z, Parks SE, Sharma KL, Bohren KM, Ye Q, et al. Identification of potent pan-ephrin receptor kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci USA 2024;121:e2322934121. DOI: https://doi.org/10.1073/pnas.2322934121
9. Ruiz JC, Robertson EJ. The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development. Mech Dev 1994;46:87–100. DOI: https://doi.org/10.1016/0925-4773(94)90078-7
10. Lindberg RA, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 1990;10:6316–24. DOI: https://doi.org/10.1128/MCB.10.12.6316
11. Veiga RN, Azevedo ALK de, Oliveira JC de, Gradia DF. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med (Berl) 2024;102:479–93. DOI: https://doi.org/10.1007/s00109-024-02431-x
12. Wang X, Cai W, Liang T, Li H, Gu Y, Wei X, et al. The matrix stiffness is increased in the eutopic endometrium of adenomyosis patients: a study based on atomic force microscopy and histochemistry. Eur J Histochem 2024;68:4131. DOI: https://doi.org/10.4081/ejh.2024.4131
13. Faraz A, Amani J, Arbabian S, Karizi SZ, Torbati MB. In vitro analysis of single chain variable fragment-based immunotoxins against Erythropoietin-producing hepatocellular A2 receptor overexpressed in breast cancer cells. J Immunol Methods 2024;533:113732. DOI: https://doi.org/10.1016/j.jim.2024.113732
14. Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021;40:2483-95. DOI: https://doi.org/10.1038/s41388-021-01714-8
15. Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in cancer: molecular complexity and therapeutic opportunities. Int J Mol Sci 2024;25:12191. DOI: https://doi.org/10.3390/ijms252212191
16. Miao H, Li D-Q, Mukherjee A, Guo H, Petty A, Cutter J, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 2009;16:9-20. DOI: https://doi.org/10.1016/j.ccr.2009.04.009
17. Taylor HS, Kotlyar AM, Flores VA. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet 2021;397:839–52. DOI: https://doi.org/10.1016/S0140-6736(21)00389-5
18. Xu H, Gao Y, Shu Y, Wang Y, Shi Q. EPHA3 enhances macrophage autophagy and apoptosis by disrupting the mTOR signaling pathway in mice with endometriosis. Biosci Rep 2019;39:BSR20182274. DOI: https://doi.org/10.1042/BSR20182274
19. Yerlikaya G, Balendran S, Pröstling K, Reischer T, Birner P, Wenzl R, et al. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis. Eur J Obstet Gynecol Reprod Biol 2016;204:88-98. DOI: https://doi.org/10.1016/j.ejogrb.2016.07.500
20. Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, et al. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology 2003;144:2870-81. DOI: https://doi.org/10.1210/en.2003-0043
21. Zhong X, Xu Y, Yang S, Liao J, Hong Z, Zhang X, et al. Molecular mechanisms of transmitted endoplasmic reticulum stress mediating immune escape of gastric cancer via PVR overexpression in TAMs. Biochim Biophys Acta Mol Basis Dis 2025;1871:167560. DOI: https://doi.org/10.1016/j.bbadis.2024.167560
22. Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: role and therapeutic perspectives. Front Immunol 2023;14:1134663. DOI: https://doi.org/10.3389/fimmu.2023.1134663
23. An R, Sun D-J, Lei H-X, He A-R, Tu Y, Tang J-T. Effect of Epstein-Barr virus on macrophage M2/M1 migration and EphA2 expression in adverse drug reactions. J Dermatol 2025;52:87–96. DOI: https://doi.org/10.1111/1346-8138.17496
24. Wang Y, Fu Y, Xue S, Ai A, Chen H, Lyu Q, Kuang Y. The M2 polarization of macrophage induced by fractalkine in the endometriotic milieu enhances invasiveness of endometrial stromal cells. Int J Clin Exp Pathol 2014;7:194–203.
25. Wu X-G, Chen J-J, Zhou H-L, Wu Y, Lin F, Shi J, et al. Identification and validation of the signatures of infiltrating immune cells in the eutopic endometrium endometria of women with endometriosis. Front Immunol 2021;12:671201. DOI: https://doi.org/10.3389/fimmu.2021.671201
26. Kisovar A, Becker CM, Granne I, Southcombe JH. The role of CD8+ T cells in endometriosis: a systematic review. Front Immunol 2023;14:1225639. DOI: https://doi.org/10.3389/fimmu.2023.1225639
27. Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, et al. Eph/Ephrin signaling in injury and inflammation. Am J Pathol 2012;181:1493-503. DOI: https://doi.org/10.1016/j.ajpath.2012.06.043
28. Reis JL, Rosa NN, Martins C, Ângelo-Dias M, Borrego LM, Lima J. The role of NK and T cells in endometriosis. Int J Mol Sci 2024;25:10141. DOI: https://doi.org/10.3390/ijms251810141
29. Riccio LGC, Baracat EC, Chapron C, Batteux F, Abrão MS. The role of the B lymphocytes in endometriosis: a systematic review. J Reprod Immunol 2017;123:29–34. DOI: https://doi.org/10.1016/j.jri.2017.09.001
30. Munthe E, Finne EF, Aasheim H-C. Expression and functional effects of Eph receptor tyrosine kinase A family members on Langerhans like dendritic cells. BMC Immunol 2004;5:9. DOI: https://doi.org/10.1186/1471-2172-5-9
31. Laginha PA, Arcoverde FVL, Riccio LGC, Andres MP, Abrão MS. The role of dendritic cells in endometriosis: a systematic review. J Reprod Immunol 2022;149:103462. DOI: https://doi.org/10.1016/j.jri.2021.103462
32. Tan Y, Flynn WF, Sivajothi S, Luo D, Bozal SB, Davé M, et al. Single cell analysis of endometriosis reveals a coordinated transcriptional program driving immunotolerance and angiogenesis across eutopic and ectopic tissues. Nat Cell Biol 2022;24:1306-18. DOI: https://doi.org/10.1038/s41556-022-00961-5
33. Choi Y, Syeda F, Walker JR, Finerty PJ, Cuerrier D, Wojciechowski A, et al. Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 2009;19:4467-70. DOI: https://doi.org/10.1016/j.bmcl.2009.05.029
34. Kottom TJ, Carmona EM, Limper AH. Targeting host tyrosine kinase receptor EphA2 signaling via small-molecule ALW-II-41-27 inhibits macrophage pro-inflammatory signaling responses to Pneumocystis carinii β-glucans. Antimicrob Agents Chemother 2024;68:e0081123. DOI: https://doi.org/10.1128/aac.00811-23
35. Martini G, Cardone C, Vitiello PP, Belli V, Napolitano S, Troiani T, et al. EPHA2 Is a predictive biomarker of resistance and a potential therapeutic target for improving antiepidermal growth factor receptor therapy in colorectal cancer. Mol Cancer Ther 2019;18:845-55. DOI: https://doi.org/10.1158/1535-7163.MCT-18-0539
36. Koninckx PR, Fernandes R, Ussia A, Schindler L, Wattiez A, Al-Suwaidi S, et al. Pathogenesis based diagnosis and treatment of endometriosis. Front Endocrinol (Lausanne) 2021;12:745548. DOI: https://doi.org/10.3389/fendo.2021.745548
37. Zeng J, Wu Q, Xiong S, Lu C, Zhang Z, Huang H, et al. Inhibition of EphA2 protects against atherosclerosis by synergizing with statins to mitigate macrophage inflammation. Biomed Pharmacother 2023;169:115885. DOI: https://doi.org/10.1016/j.biopha.2023.115885
38. Ferrao Blanco MN, Lesage R, Kops N, Fahy N, Bekedam FT, Chavli A, et al. A multi-model approach identifies ALW-II-41-27 as a promising therapy for osteoarthritis-associated inflammation and endochondral ossification. Heliyon 2024;10:e40871. DOI: https://doi.org/10.1016/j.heliyon.2024.e40871
39. Brantley-Sieders DM, Fang WB, Hicks DJ, Zhuang G, Shyr Y, Chen J. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J 2005;19:1884-6. DOI: https://doi.org/10.1096/fj.05-4038fje
40. Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012;114:1-20. DOI: https://doi.org/10.1016/B978-0-12-386503-8.00001-6
41. Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011;15:31-51. DOI: https://doi.org/10.1517/14728222.2011.538682
42. Pasquale EB. Eph receptors and ephrins in cancer progression. Nat Rev Cancer 2024;24:5–27. DOI: https://doi.org/10.1038/s41568-023-00634-x
43. Akada M, Harada K, Negishi M, Katoh H. EphB6 promotes anoikis by modulating EphA2 signaling. Cell Signal 2014;26:2879-84. DOI: https://doi.org/10.1016/j.cellsig.2014.08.031
44. Takemura Y, Osuga Y, Yoshino O, Hasegawa A, Hirata T, Hirota Y, et al. Metformin suppresses interleukin (IL)-1beta-induced IL-8 production, aromatase activation, and proliferation of endometriotic stromal cells. J Clin Endocrinol Metab 2007;92:3213-8. DOI: https://doi.org/10.1210/jc.2006-2486
45. Oner G, Ozcelik B, Ozgun MT, Serin IS, Ozturk F, Basbug M. The effects of metformin and letrozole on endometriosis and comparison of the two treatment agents in a rat model. Hum Reprod 2010;25:932–7. DOI: https://doi.org/10.1093/humrep/deq016
46. Han B, Zhang H, Tian R, Liu H, Wang Z, Wang Z, et al. Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through Ephrin A1-EPHA2 forward signaling. Theranostics 2022;12:4127–46. DOI: https://doi.org/10.7150/thno.72404
47. Hsu C-C, Peng D, Cai Z, Lin H-K. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022;85:52–68. DOI: https://doi.org/10.1016/j.semcancer.2021.04.006
48. Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023;14:1114582. DOI: https://doi.org/10.3389/fimmu.2023.1114582
49. Chang Q, Jorgensen C, Pawson T, Hedley DW. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer 2008;99:1074–82. DOI: https://doi.org/10.1038/sj.bjc.6604676
50. Gan HK, Parakh S, Lee FT, Tebbutt NC, Ameratunga M, Lee ST, et al. A phase 1 safety and bioimaging trial of antibody DS-8895a against EphA2 in patients with advanced or metastatic EphA2 positive cancers. Invest New Drugs 2022;40:747–55. DOI: https://doi.org/10.1007/s10637-022-01237-3
51. Landen CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910–8. DOI: https://doi.org/10.1158/0008-5472.CAN-05-0530
52. Chang F-L, Lee C-C, Tsai K-C, Lin T-Y, Chiang C-W, Pan S-L, Lee Y-C. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment. Biochem Biophys Res Commun 2023;688:149214. DOI: https://doi.org/10.1016/j.bbrc.2023.149214
53. Jackson D, Gooya J, Mao S, Kinneer K, Xu L, Camara M, et al. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res 2008;68:9367-74. DOI: https://doi.org/10.1158/0008-5472.CAN-08-1933
54. Peng Y, Ding S, Xu P, Zhang X, Wang J, Li T, et al. CCL18 promotes endometriosis by increasing endometrial cell migration and neuroangiogenesis. Eur J Histochem 2024;68:4052. DOI: https://doi.org/10.4081/ejh.2024.4052

Ethics Approval

the clinical study was approved by the Ethics Committee of Renmin Hospital of Wuhan University (clinical trial number: WDRY2024-K111)

Supporting Agencies

Natural Science Foundation of Hubei Province, National Natural Science Foundation of China

How to Cite



1.
Yang C, Wang S, Li M, Pang X, Tan A. Targeting EphA2 suppresses the proliferation, migration and invasion of endometriosis via the AMPK signaling pathway. Eur J Histochem [Internet]. 2025 Jun. 17 [cited 2026 Jan. 28];69(3). Available from: https://www.ejh.it/ejh/article/view/4168