Articles

Expression of bone morphogenetic protein signaling pathway players in the jejunum and colon of adult rats

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 21 August 2025
284
Views
208
Downloads
9
HTML

Authors

The bone morphogenetic protein (BMP) pathway, which plays a crucial role in the control of intestinal epithelial cell homeostasis, has been studied in mice and humans, leading to an understanding of its involvement in several intestinal pathologies. However, the expression and localization of the various actors (ligands, antagonists, receptors) of this pathway remain unknown in the rat intestine, although this species is widely used in pathophysiology studies. Here, we aimed to determine the expression and localization of the various players in the BMP pathway in the jejunum and colon of the rat using RT-qPCR and immunohistochemistry. BMP2, mainly localized in epithelial cells, was the most expressed ligand in the jejunum and colon in comparison with BMP4, BMP6 and BMP7. We showed for the first time that BMP7 was highly expressed in epithelial cells in both tissues. BMP2, BMP6 and BMP7 ligands were also present in the enteric nervous plexuses, as the BMP receptors and antagonists Noggin and Chordin-like 1. The expression of BMP antagonists and ligands in enterocytes and mature colonocytes could suggest a paracrine or autocrine feedback modulation at the cellular level. Finally, all the studied BMP actors were present in colonic vessel walls including GREM1, a BMP antagonist described as pro-angiogenic and also being a ligand for VEGFR receptors. These data provided a good correlation between the observations in rats compared to those in humans and highlighted the importance of the BMP pathway not only in the intestinal epithelium, but also in both the enteric nervous system and vascular system. Our work lays the foundations for further studies on the involvement of the BMP pathway in rat models of intestinal pathophysiology.

Downloads

Download data is not yet available.

Citations

1. Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 2014;1:87-105. DOI: https://doi.org/10.1016/j.gendis.2014.07.005
2. Zhang Y, Que J. BMP signaling in development, stem Cells, and diseases of the gastrointestinal tract. Annu Rev Physiol 2020;82:251-73. DOI: https://doi.org/10.1146/annurev-physiol-021119-034500
3. Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: new insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020;334:113455. DOI: https://doi.org/10.1016/j.expneurol.2020.113455
4. Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, et al. Structural perspective of BMP ligands and signaling. Bone 2020;140:115549. DOI: https://doi.org/10.1016/j.bone.2020.115549
5. Yang J, Li X, Li Y, Southwood M, Ye L, Long L, et al. Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2013;305:L312-21. DOI: https://doi.org/10.1152/ajplung.00054.2013
6. Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, et al. Runx2 Is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000;20:8783-92. DOI: https://doi.org/10.1128/MCB.20.23.8783-8792.2000
7. Yanagita M. BMP antagonists: Their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev 2005;16:309-17. DOI: https://doi.org/10.1016/j.cytogfr.2005.02.007
8. Hardwick JCH, Van Den Brink GR, Bleuming SA, Ballester I, Van Den Brande JMH, Keller JJ, et al. Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastroenterology 2004;126:111-21. DOI: https://doi.org/10.1053/j.gastro.2003.10.067
9. Zhang C, Feng Y, Yang H, Koga H, Teitelbaum DH. The bone morphogenetic protein signaling pathway is upregulated in a mouse model of total parenteral nutrition. J Nutr 2009;139:1315-21. DOI: https://doi.org/10.3945/jn.108.096669
10. Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, et al. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 2011;140:297-309. DOI: https://doi.org/10.1053/j.gastro.2010.10.005
11. Arndt S, Maegdefrau U, Dorn C, Schardt K, Hellerbrand C, Bosserhoff A. Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterolog. 2010;138:372-82. DOI: https://doi.org/10.1053/j.gastro.2009.09.048
12. Zeng YH, Zhou LY, Chen QZ, Li Y, Shao Y, Ren WY, et al. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol Rep 2017;38:456-64. DOI: https://doi.org/10.3892/or.2017.5662
13. Kosinski C, Li VSW, Chan ASY, Zhang J, Ho C, Tsui WY, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 2007;104:15418-23. DOI: https://doi.org/10.1073/pnas.0707210104
14. Koppens MAJ, Davis H, Valbuena GN, Mulholland EJ, Nasreddin N, Colombe M, et al. Bone morphogenetic protein pathway antagonism by Grem1 regulates epithelial cell fate in intestinal regeneration. Gastroenterology 2021;161:239254.e9. DOI: https://doi.org/10.1053/j.gastro.2021.03.052
15. Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 2005;122:821-33. DOI: https://doi.org/10.1016/j.mod.2005.03.003
16. Chalazonitis A, D’Autréaux F, Guha U, Pham TD, Faure C, Chen JJ, et al. Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset. J Neurosci 2004;24:4266-82. DOI: https://doi.org/10.1523/JNEUROSCI.3688-03.2004
17. Torihashi S, Hattori T, Hasegawa H, Kurahashi M, Ogaeri T, Fujimoto T. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation 2009;77:277-89. DOI: https://doi.org/10.1016/j.diff.2008.10.003
18. Chalazonitis A, Kessler JA. Pleiotropic effects of the bone morphogenetic proteins on development of the enteric nervous system. Dev Neurobiol 2012;72:843-56. DOI: https://doi.org/10.1002/dneu.22002
19. Robinette ML, Colonna M. GI motility: microbiota and macrophages join forces. Cel. 2014;158:239-40. DOI: https://doi.org/10.1016/j.cell.2014.06.040
20. Liu X, Liu S, Xu Y, Liu X, Sun D. Bone morphogenetic protein 2 regulates the differentiation of nitrergic enteric neurons by modulating Smad1 signaling in slow transit constipation. Mol Med Rep 2015;12:6547-54. DOI: https://doi.org/10.3892/mmr.2015.4297
21. Huang S, Wang Y, Luo L, Li X, Jin X, Li S, et al. BMP2 is related to Hirschsprung’s Disease and required for enteric nervous system development. Front Cell Neurosci 2019;13:523. DOI: https://doi.org/10.3389/fncel.2019.00523
22. Zhang J, Liu F. Expression of BMP-4 and Smad1 in patients with Hirschsprung disease and its clinical significance. Exp Ther Med 2019;18:225-9. DOI: https://doi.org/10.3892/etm.2019.7530
23. Xie Z, Zhou G, Zhang M, Han J, Wang Y, Li X, et al. Recent developments on BMPs and their antagonists in inflammatory bowel diseases. Cell Death Discov 2023;9:1-10. DOI: https://doi.org/10.1038/s41420-023-01520-z
24. Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR. Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cance. 2008;8:806-12. DOI: https://doi.org/10.1038/nrc2467
25. Bonjoch L, Fernandez-Rozadilla C, Alvarez-Barona M, Lopez-Novo A, Herrera-Pariente C, Amigo J, et al. BMPR2 as a novel predisposition gene for hereditary colorectal polyposis. Gastroenterology 2023;165:162-172.e5. DOI: https://doi.org/10.1053/j.gastro.2023.03.006
26. Liu Y, Wang Z, Zhang Z, Sun Y, Zhang Y, Yang J. A case report of adult juvenile polyposis syndrome with SMAD4 pathogenic variant. Front Oncol 2023;13:1114097. DOI: https://doi.org/10.3389/fonc.2023.1114097
27. Jaeger E, Leedham S, Lewis A, Segditsas S, Becker M, Cuadrado PR, et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet 2012;44:699-703. DOI: https://doi.org/10.1038/ng.2263
28. Li J, Liu H, Zou L, Ke J, Zhang Y, Zhu Y, et al. A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site. Oncotarget 2017;8:61318-26. DOI: https://doi.org/10.18632/oncotarget.18095
29. McKenna DB, Van Den Akker J, Zhou AY, Ryan L, Leon A, O’Connor R, et al. Identification of a novel GREM1 duplication in a patient with multiple colon polyps. Fam Cancer 2019;18:63-6. DOI: https://doi.org/10.1007/s10689-018-0090-6
30. Hu L, Xu J, Wang X, Feng L, Zhang C, Wang J, et al. Bone morphogenetic protein 4 alleviates DSS-induced ulcerative colitis through activating intestinal stem cell by target ID3. Front Cell Dev Biol 2021;9:700864. DOI: https://doi.org/10.3389/fcell.2021.700864
31. Bahamonde ME, Lyons KM. BMP3: to be or not to be a BMP. J Bone Joint Surge Am 2001;83:S56. DOI: https://doi.org/10.2106/00004623-200100001-00008
32. Jin G, Westphalen CB, Hayakawa Y, Worthley DL, Asfaha S, Yang X, et al. Progastrin stimulates colonic cell proliferation via CCK2R- and β-arrestin-dependent suppression of BMP2. Gastroenterology 2013;145:820-30. DOI: https://doi.org/10.1053/j.gastro.2013.07.034
33. Berková L, Fazilaty H, Yang Q, Kubovčiak J, Stastna M, Hrckulak D, et al. Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. EMBO Rep 2023;24:e56454. DOI: https://doi.org/10.15252/embr.202256454
34. Honoré SM, Zelarayan LC, Genta SB, Sánchez SS. Neuronal loss and abnormal BMP/Smad signaling in the myenteric plexus of diabetic rats. Auton Neurosci 2011;164:51-61. DOI: https://doi.org/10.1016/j.autneu.2011.06.003
35. Ji T, Takabayashi H, Mao M, Han X, Xue X, Brazil JC, et al. Regulation and function of bone morphogenetic protein signaling in colonic injury and inflammation. Am J Physiol - Gastrointest Liver Physiol 2017;312:G24-33. DOI: https://doi.org/10.1152/ajpgi.00169.2016
36. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 2004;36:1117-21. DOI: https://doi.org/10.1038/ng1430
37. Kaito T, Morimoto T, Mori Y, Kanayama S, Makino T, Takenaka S, et al. BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation. Spine J 2018;18:139-46. DOI: https://doi.org/10.1016/j.spinee.2017.07.171
38. Kim HS, Neugebauer J, McKnite A, Tilak A, Christian JL. BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. eLife 2019;8:e48872. DOI: https://doi.org/10.7554/eLife.48872
39. Zhu W, Kim J, Cheng C, Rawlins BA, Boachie-Adjei O, Crystal RG, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone 2006;39:61-71. DOI: https://doi.org/10.1016/j.bone.2005.12.018
40. Crews L, Adame A, Patrick C, Delaney A, Pham E, Rockenstein E, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010;30:12252-62. DOI: https://doi.org/10.1523/JNEUROSCI.1305-10.2010
41. Nonner D, Barrett EF, Kaplan P, Barrett JN. Bone morphogenetic proteins (BMP6 and BMP7) enhance the protective effect of neurotrophins on cultured septal cholinergic neurons during hypoglycemia. J Neurochem 2001;77:691-9. DOI: https://doi.org/10.1046/j.1471-4159.2001.00273.x
42. Hayashi Y, Mikawa S, Ogawa C, Masumoto K, Katou F, Sato K. BMP6 expression in the adult rat central nervous system. J Chem Neuroanat 2019;98:41-54. DOI: https://doi.org/10.1016/j.jchemneu.2019.03.004
43. Ouahoud S, Hardwick JCH, Hawinkels LJAC. Extracellular BMP antagonists, multifaceted orchestrators in the tumor and its microenvironment. Int J Mol Sci 2020;21:3888. DOI: https://doi.org/10.3390/ijms21113888
44. Younes M, Mamilla D, Ko TC, Cao Y. Overexpression of Gremlin1 in Crohn’s disease-associated bowel strictures. Ann Clin Lab Sc. 2023;53:457-9.
45. Gao Z, Houthuijzen JM, Ten Dijke P, Brazil DP. GREM1 signaling in cancer: tumor promotor and suppressor? J Cell Commun Signal 2023;17:1517-26. DOI: https://doi.org/10.1007/s12079-023-00777-4
46. McCarthy N, Tie G, Madha S, He R, Kraiczy J, Maglieri A, et al. Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev Cell 2023;58:550. DOI: https://doi.org/10.1016/j.devcel.2023.02.012
47. Dutton LR, Hoare OP, McCorry AM, Redmond KL, Adam NE, Canamara S, et al. Fibroblast-derived Gremlin1 localises to epithelial cells at the base of the intestinal crypt. Oncotarget 2019;10:4630. DOI: https://doi.org/10.18632/oncotarget.27050
48. Liu Y, Li Y, Hou R, Shu Z. Knockdown GREM1 suppresses cell growth, angiogenesis, and epithelial‐mesenchymal transition in colon cancer. J Cell Biochem 2019;120:5583-96. DOI: https://doi.org/10.1002/jcb.27842
49. Mitola S, Ravelli C, Moroni E, Salvi V, Leali D, Ballmer-Hofer K, et al. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 2010;116:3677-80. DOI: https://doi.org/10.1182/blood-2010-06-291930
50. Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, et al. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 2002;106:2263-70. DOI: https://doi.org/10.1161/01.CIR.0000033830.36431.46
51. McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 2020;26:391-402.e5. DOI: https://doi.org/10.1016/j.stem.2020.01.008
52. Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: molecular pathways and related disorders (Review). Int J Mol Med 2020;46:27-57. DOI: https://doi.org/10.3892/ijmm.2020.4583
53. Burclaff J, Bliton RJ, Breau KA, Ok MT, Gomez-Martinez I, Ranek JS, et al. A Proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell Mol Gastroenterol Hepatol 2022;13:1554-89. DOI: https://doi.org/10.1016/j.jcmgh.2022.02.007
54. Malonga T, Vialaneix N, Beaumont M. BEST4+ cells in the intestinal epithelium. Am J Physiol-Cell Physiol 2024;326:C1345-52. DOI: https://doi.org/10.1152/ajpcell.00042.2024
55. Brügger MD, Valenta T, Fazilaty H, Hausmann G, Basler K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol 2020;18:e3001032. DOI: https://doi.org/10.1371/journal.pbio.3001032
56. Kloen P, Lauzier D, Hamdy RC. Co-expression of BMPs and BMP-inhibitors in human fractures and non-unions. Bone 2012;51:59-68. DOI: https://doi.org/10.1016/j.bone.2012.03.032
57. Brewer KC, Mwizerva O, Goldstein AM. BMPRIA is a promising marker for evaluating ganglion cells in the enteric nervous system - a pilot study. Hum Pathol 2005;36:1120-6. DOI: https://doi.org/10.1016/j.humpath.2005.08.006

Ethics Approval

the animal experiment was authorized by the French Ministry for Higher Education, Research and Innovation (MESRI) in accordance with the local Ethic Committee evaluation

How to Cite



1.
Cogo E, Fouché E, Buisson C, Omotoyinbo A, Pierre F, Guéraud F, et al. Expression of bone morphogenetic protein signaling pathway players in the jejunum and colon of adult rats. Eur J Histochem [Internet]. 2025 Aug. 21 [cited 2026 Jan. 19];69(3). Available from: https://www.ejh.it/ejh/article/view/4174