Articles

Histological and histochemical characterization of the musk gland in forest musk deer (Moschus berezovskii): a preliminary study

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 10 July 2025
296
Views
151
Downloads
12
HTML

Authors

Musk is a biologically valuable secretion from the musk gland of male musk deer, with significant economic and medicinal importance. Due to severe decline and depletion of wild musk deer population, captive breeding of musk deer has become the primary approach for sustainable musk production. So far, the histological structure and secretion mechanism of the musk gland remain incompletely understood. In this study, we employed histological and immunohistochemical (IHC) techniques, along with three-dimensional (3D) tissue reconstruction, to systematically analyze the cellular composition and secretory functions of the musk gland in forest musk deer (Moschus berezovskii). Our results revealed that the musk gland was primarily composed of acinar structures containing two distinct glandular cell (GC) types based on the histological observation. IHC results showed type I glandular cells (GCIs) predominantly expressed GALNT7 while type II glandular cells (GCIIs) mainly expressed BMP6. The 3D reconstruction demonstrated structural heterogeneity along the gland's longitudinal axis, with the proportion of the acinar area varying between 40% and 65%. This is the first time that a detailed 3D view of musk gland in forest musk deer has been shown, which provides essential histological insights into musk gland function in this species. These preliminary observations may provide useful groundwork for future investigations into the regulatory mechanisms of musk secretion.

Downloads

Download data is not yet available.

Citations

1. Fan MY, Zhang MS, Shi MH, Zhang TX, Qi L, Yu J, et al. Sex hormones play roles in determining musk composition during the early stages of musk secretion by musk deer (Moschus berezovskii). Endocr J 2018;65:1111-20. DOI: https://doi.org/10.1507/endocrj.EJ18-0211
2. Yoshikawa K, Deguchi J, Hu JY, Lu HY, Matsunami H. An odorant receptor that senses four classes of musk compounds. Curr Biol 2022;32:5172-79. DOI: https://doi.org/10.1016/j.cub.2022.10.038
3. Jie H, Feng XL, Zhao GJ, Zeng DJ, Zhang CL, Chen Q. Research progress on musk secretion mechanism of forest musk deer. Chin J Chin Mater Med 2014;39:4522-5.
4. Wang Y, Sun M, Chang F, Wang J, Wang Y, Tang J, et al. The essential differences in microbial and chemical components of musk of different qualities secreted by captive male forest musk deer (Moschus berezovskii). Microb Biotechnol 2022;15:1783-94. DOI: https://doi.org/10.1111/1751-7915.14002
5. Ding M, Fan JL, Huang DF, Jiang Y, Li MN, Zheng YQ, et al. From non-targeted to targeted GC-MS metabolomics strategy for identification of TCM preparations containing natural and artificial musk. Chin Med 2022;17:41. DOI: https://doi.org/10.1186/s13020-022-00594-8
6. Jiang F, Zhang JJ, Gao HM, Cai ZY, Zhou XW, Li S, Zhang TZ. Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Sci Total Environ 2020;704:135335. DOI: https://doi.org/10.1016/j.scitotenv.2019.135335
7. Fan ZX, Li WJ, Jin JZ, Cui K, Yan CC, Peng CJ, et al. The draft genome sequence of forest musk deer (Moschus berezovskii). Gigascience 2018;7:giy038. DOI: https://doi.org/10.1093/gigascience/giy038
8. Hong TT, Liu CM, Wang SH,’ Dong XG, Ren ZJ. The Histostructures of musk gland at different ages and periods in forest musk deer. Chin J Zool 2023;58:742 -50.
9. Feng WH, You YX, Yong HY, Li GR, Gu QX. Histological observation of musk gland in forest musk deer. Chin J Zool 1981;1981:33-5.
10. Feng H, Feng TY, Mo YD, Sun SL, Wang L, Lu CB, et al. Integrated multi-omics analysis reveals insights into Chinese forest musk deer (Moschus berezovskii) genome evolution and musk synthesis. Front Cell Dev Biol 2023;11:1156138. DOI: https://doi.org/10.3389/fcell.2023.1156138
11. Liu CM, Hong TT, Yu L, Chen Y, Wang SH, Ren ZJ. Single-nucleus RNA and ATAC sequencing uncovers the molecular and cellular characteristics in the musk gland of Chinese forest musk deer (Moschus berezovskii). FASEB J 2023;37:e22742. DOI: https://doi.org/10.1096/fj.202201372R
12. Haddad TS, Friedl P, Farahani N, Treanor D, Zlobec I, Nagtegaal I. Tutorial: methods for three-dimensional visualization of archival tissue material. Nat Protoc 2021;16:4945-62. DOI: https://doi.org/10.1038/s41596-021-00611-4
13. Liu HX, Zhu RY, Liu CY, Ma RF, Wang LL, Chen BB, et al. Evaluation of decalcification techniques for rat femurs using HE and immunohistochemical staining. Biomed Res Int 2017;2017:9050754. DOI: https://doi.org/10.1155/2017/9050754
14. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 2014;2014:655-8. DOI: https://doi.org/10.1101/pdb.prot073411
15. Zhang TX, Peng D, Qi L, Li WX, Fan MY, Shen JC, et al. Musk gland seasonal development and musk secretion are regulated by the testis in muskrat (Ondatra zibethicus). Biol Res 2017;50:10. DOI: https://doi.org/10.1186/s40659-017-0116-9
16. Guo SM, Yang WJ, Chen D, Ren BL, Guo L, Wang X, et al. The effects of low ambient temperature on steroidogenesis and mitochondrial functions in the testes of wild ground squirrels (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol 2024;290:111585. DOI: https://doi.org/10.1016/j.cbpa.2024.111585
17. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676-82. DOI: https://doi.org/10.1038/nmeth.2019
18. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 2014;9:e96801. DOI: https://doi.org/10.1371/journal.pone.0096801
19. Chen M, Jie H, Xu ZX, Ma T, Lei MY, Zeng DJ, et al. Isolation, primary culture, and morphological characterization of gland epithelium from forest musk deer (Moschus berezovskii). In Vitro Cell Dev Biol Anim 2018;54:545-8. DOI: https://doi.org/10.1007/s11626-018-0268-0
20. Yang JM, Peng GF, Shu F, Dong DQ, Zheng XL, Zhu C, et al. Characteristics of steroidogenesis-related factors in the musk gland of Chinese forest musk deer (Moschus berezovskii). J Steroid Biochem Mol Biol 2021;212:105916. DOI: https://doi.org/10.1016/j.jsbmb.2021.105916
21. Liu CM, Hong TT, Wang SH, Dong XG, Ren ZJ. Research progress on molecular mechanism of musk secretion in forest musk deer. Chin J Zool 2022;57:152-8.
22. Liu CM, Hong TT, Yu L, Chen Y, Dong XG, Ren ZJ. Single-nucleus multiomics unravels the genetic mechanisms underlying musk secretion in Chinese forest musk deer (Moschus berezovskii). Int J Biol Macromol 2024;279:135050. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135050
23. Wang T, Yang MS, Shi X, Tian SL, Li Y, Xie WQ, et al. Multiomics analysis provides insights into musk secretion in muskrat and musk deer. Gigascience 2025;14:giaf006. DOI: https://doi.org/10.1093/gigascience/giaf006
24. Rocha EM, Alves M, Rios JD, Dartt DA. The aging lacrimal gland: changes in structure and function. Ocul Surf 2008;6:162-74. DOI: https://doi.org/10.1016/S1542-0124(12)70177-5
25. Bannier-Hélaouët M, Post Y, Korving J, Trani Bustos M, Gehart H, Begthel H, et al. Exploring the human lacrimal gland using organoids and single-cell sequencing. Cell Stem Cell 2021;28:1221-32. DOI: https://doi.org/10.1016/j.stem.2021.02.024
26. Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022;102:1495-552. DOI: https://doi.org/10.1152/physrev.00015.2021
27. Li L, Cao HR, Yang JM, Jin TQ, Ma YX, Wang Y, et al. Genetic and histological relationship between pheromone-secreting tissues of the musk gland and skin of juvenile Chinese forest musk deer (Moschus berezovskii Flerov, 1929). J Zhejiang Univ Sci B 2023;24:807-22. DOI: https://doi.org/10.1631/jzus.B2200692
28. Liu CM, Hong TT, Zhao CC, Xue T, Wang SH, Ren ZJ. Single-nucleus transcriptomics and chromatin accessibility analysis of musk gland development in Chinese forest musk deer (Moschus berezovskii). Integr Zool 2024;19:955-74. DOI: https://doi.org/10.1111/1749-4877.12823
29. Flasse L, Schewin C, Grapin-Botton A. Pancreas morphogenesis: Branching in and then out. Curr Top Dev Biol 2021;143:75-110. DOI: https://doi.org/10.1016/bs.ctdb.2020.10.006
30. Huang L, Desai R, Conrad DN, Leite NC, Akshinthala D, Lim CM, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 2021;28:1090-104. DOI: https://doi.org/10.1016/j.stem.2021.03.022
31. Porcheri C, Mitsiadis TA. Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019;8:976. DOI: https://doi.org/10.3390/cells8090976
32. Wang JH, Laurie GW. Organogenesis of the exocrine gland. Dev Biol 2004;273:1-22. DOI: https://doi.org/10.1016/j.ydbio.2004.05.025
33. Barrows CML, Wu D, Farach-Carson MC, Young S. Building a functional salivary gland for cell-based therapy: more than secretory epithelial acini. Tissue Eng Part A 2020;26:1332-48. DOI: https://doi.org/10.1089/ten.tea.2020.0184
34. Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017;14:296-304. DOI: https://doi.org/10.1038/nrgastro.2017.12
35. Zhang FW, Liu Q, Wang ZY, Xie WQ, Sheng X, Zhang HL, et al. Seasonal expression of oxytocin and oxytocin receptor in the scented gland of male muskrat (Ondatra zibethicus). Sci Rep 2017;7:16627. DOI: https://doi.org/10.1038/s41598-017-16973-3
36. Zhang T, Peng D, Qi L, Li W, Fan M, Shen J, et al. Musk gland seasonal development and musk secretion are regulated by the testis in muskrat (Ondatra zibethicus). Biol Res 2017;50:10. DOI: https://doi.org/10.1186/s40659-017-0116-9
37. Li Y, Zhang T, Zhou J, Yang S, Fan M, Sun X, et al. Transcriptome analysis of muskrat scented glands degeneration mechanism. PLoS One 2017;12:e0176935. DOI: https://doi.org/10.1371/journal.pone.0176935
38. Machida Y, Michishita M, Yoshimura H, Kato T, Hayama SI, Takahashi K. Malignant rhabdoid tumor of the musk gland and systemic T-cell lymphoma in a masked palm civet (Paguma larvata). J Vet Med Sci 2019;81:975-9. DOI: https://doi.org/10.1292/jvms.18-0616
39. Xu Z, Li F, Liu Q, Ma T, Feng X, Zhao G, et al. Chemical composition and microbiota changes across musk secretion stages of forest musk deer. Front Microbiol 2024;15:1322316. DOI: https://doi.org/10.3389/fmicb.2024.1322316

Supporting Agencies

5·5 Engineering Research & Innovation Team Project of Beijing Forestry University (BLRC 2023C02), Beijing Natural Science Foundation (6222042), National Natural Science Foundation of China (32270519)

How to Cite



1.
Wang Q, Han C, Zhang D, Liu Y, Gao Y, Zhang H, et al. Histological and histochemical characterization of the musk gland in forest musk deer (Moschus berezovskii): a preliminary study. Eur J Histochem [Internet]. 2025 Jul. 10 [cited 2025 Dec. 28];69(3). Available from: https://www.ejh.it/ejh/article/view/4216

Share