Brief Reports

Immunohistochemical analysis of YB-1 expression in the developing mouse eye

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 3 November 2025
162
Views
87
Downloads
4
HTML

Authors

Cold shock domain (CSD) proteins, such as YB-1, play a crucial role in the regulation of transcription, mRNA stability, and translation. Consequently, YB-1 is implicated in processes such as cell differentiation, oncogenesis and oxidative stress response. The development of the eye is a complex process that involves the differentiation of numerous highly specialized cell types. We hypothesized that YB-1 is involved in both eye development and stress defense mechanisms. As an initial step, we investigated the expression of YB-1 during the embryology of the mouse eye. YB-1 mRNA could be detected by RT-PCR and sequencing the PCR product in retinal tissue of adult mice. To elucidate the expression pattern of YB-1 protein during mouse eye development, we analyzed its expression in the developing mouse eye at embryonic day 13 (E13), E15, E18 and postnatal day 14 (P14) using immunohistochemistry. Expression of the YB-1 protein was detected in all retinal cells, as well as in the corneal and lens epithelial cells, throughout all stages of eye development examined. These findings suggest that YB-1 could have a significant role in the eye, potentially related to development and differentiation.

Downloads

Download data is not yet available.

Citations

1. Graw J. Eye development. Curr Top Dev Biol 2010;90:343-86. DOI: https://doi.org/10.1016/S0070-2153(10)90010-0
2. Hoon M, Okawa H, Della Santina L, Wong RO. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014;42:44-84. DOI: https://doi.org/10.1016/j.preteyeres.2014.06.003
3. Chang W, Zhao Y, Rayee D, Xie Q, Suzuki M, Zheng D, et al. Dynamic changes in whole genome DNA methylation, chromatin and gene expression during mouse lens differentiation. Epigenetics Chromatin 2023;16:4. DOI: https://doi.org/10.1186/s13072-023-00478-7
4. Balazs EA, Toth LZ, Ozanics V. Cytological studies on the developing vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1980;213:71-85. DOI: https://doi.org/10.1007/BF00413534
5. Ito M, Nakashima M, Tsuchida N, Imaki J, Yoshioka M. Histogenesis of the intravitreal membrane and secondary vitreous in the mouse. Invest Ophthalmol Vis Sci 2007;48:1923-30. DOI: https://doi.org/10.1167/iovs.06-0325
6. Miesfeld JB, Brown NL. Eye organogenesis: A hierarchical view of ocular development. Curr Top Dev Biol 2019;132:351-93. DOI: https://doi.org/10.1016/bs.ctdb.2018.12.008
7. Byerly MS, Blackshaw S. Vertebrate retina and hypothalamus development. Wiley Interdiscip Rev Syst Biol Med 2009;1:380-9. DOI: https://doi.org/10.1002/wsbm.22
8. Cayouette M, Poggi L, Harris WA. Lineage in the vertebrate retina. Trends Neurosci 2006;29:563-70. DOI: https://doi.org/10.1016/j.tins.2006.08.003
9. Cepko C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014;15:615-27. DOI: https://doi.org/10.1038/nrn3767
10. Marquardt T, Gruss P. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 2002;25:32-8. DOI: https://doi.org/10.1016/S0166-2236(00)02028-2
11. Swamynathan SK. Ocular surface development and gene expression. J Ophthalmol 2013;2013:103947. DOI: https://doi.org/10.1155/2013/103947
12. Pajoohesh-Ganji A, Stepp MA. In search of markers for the stem cells of the corneal epithelium. Biol Cell 2005;97:265-76. DOI: https://doi.org/10.1042/BC20040114
13. Zhu CC, Dyer MA, Uchikawa M, Kondoh H, Lagutin OV, Oliver G. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 2002;129:2835-49. DOI: https://doi.org/10.1242/dev.129.12.2835
14. Bohm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, et al. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023;68:102967. DOI: https://doi.org/10.1016/j.redox.2023.102967
15. Ankamah E, Sebag J, Ng E, Nolan JM. Vitreous antioxidants, degeneration, and vitreo-retinopathy: exploring the links. Antioxidants (Basel) 2019;9:7. DOI: https://doi.org/10.3390/antiox9010007
16. Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA 2014;5:95-110. DOI: https://doi.org/10.1002/wrna.1200
17. Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018;16:63. DOI: https://doi.org/10.1186/s12964-018-0274-6
18. Shah A, Lindquist JA, Rosendahl L, Schmitz I, Mertens PR. Novel insights into YB-1 signaling and cell death decisions. Cancers (Basel) 2021;13:3306. DOI: https://doi.org/10.3390/cancers13133306
19. Xue X, Huang J, Yu K, Chen X, He Y, Qi D, et al. YB-1 transferred by gastric cancer exosomes promotes angiogenesis via enhancing the expression of angiogenic factors in vascular endothelial cells. BMC Cancer 2020;20:996. DOI: https://doi.org/10.1186/s12885-020-07509-6
20. Shaughnessy M, Wistow G. Absence of MHC gene expression in lens and cloning of dbpB/YB-1, a DNA-binding protein expressed in mouse lens. Curr Eye Res 1992;11:175-81. DOI: https://doi.org/10.3109/02713689209000068
21. Sel S, Kalinski T, Enssen I, Kaiser M, Nass N, Trau S, et al. Expression analysis of ADAM17 during mouse eye development. Ann Anat 2012;194:334-8. DOI: https://doi.org/10.1016/j.aanat.2011.10.008
22. Sel S, Munzenberg C, Nass N, Kalinski T, Datan M, Auffarth GU, et al. The transcription factor Foxk1 is expressed in developing and adult mouse neuroretina. Gene Expr Patterns 2013;13:280-6. DOI: https://doi.org/10.1016/j.gep.2013.05.003
23. Sel S, Patzel E, Poggi L, Kaiser D, Kalinski T, Schicht M, et al. Temporal and spatial expression pattern of Nnat during mouse eye development. Gene Expr Patterns 2017;23-24:7-12. DOI: https://doi.org/10.1016/j.gep.2016.12.002
24. Behringer A, Stoimenovski D, Porsch M, Hoffmann K, Behre G, Grosse I, et al. Relationship of micro-RNA, mRNA and eIF expression in tamoxifen-adapted MCF-7 breast cancer cells: impact of miR-1972 on gene expression, proliferation and migration. Biomolecules 2022;12:916. DOI: https://doi.org/10.3390/biom12070916
25. Ladner-Keay CL, Turner RJ, Edwards RA. Fluorescent protein visualization immediately after gel electrophoresis using an in-gel trichloroethanol photoreaction with tryptophan. Methods Mol Biol 2018;1853:179-90. DOI: https://doi.org/10.1007/978-1-4939-8745-0_22
26. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep 2017;7:16878. DOI: https://doi.org/10.1038/s41598-017-17204-5
27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-10. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
28. Zhao S, Wang Y, Guo T, Yu W, Li J, Tang Z, et al. YBX1 regulates tumor growth via CDC25a pathway in human lung adenocarcinoma. Oncotarget 2016;7:82139-57. DOI: https://doi.org/10.18632/oncotarget.10080
29. Guarino AM, Mauro GD, Ruggiero G, Geyer N, Delicato A, Foulkes NS, et al. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Sci Rep 2019;9:9059. DOI: https://doi.org/10.1038/s41598-019-45468-6
30. Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res 2016;44:6949-60. DOI: https://doi.org/10.1093/nar/gkw418
31. Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol 2015;208:913-29. DOI: https://doi.org/10.1083/jcb.201411047
32. Tanaka T, Ohashi S, Kobayashi S. Roles of YB-1 under arsenite-induced stress: translational activation of HSP70 mRNA and control of the number of stress granules. Biochim Biophys Acta 2014;1840:985-92. DOI: https://doi.org/10.1016/j.bbagen.2013.11.002
33. Ivanova IG, Park CV, Yemm AI, Kenneth NS. PERK/eIF2alpha signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1alpha translation. Nucleic Acids Res 2018;46:3878-90. DOI: https://doi.org/10.1093/nar/gky127
34. Vo DK, Engler A, Stoimenovski D, Hartig R, Kaehne T, Kalinski T, et al. Interactome mapping of eIF3A in a colon cancer and an immortalized embryonic cell line using proximity-dependent biotin identification. Cancers (Basel) 2021;13:1293. DOI: https://doi.org/10.3390/cancers13061293
35. Evans MK, Matsui Y, Xu B, Willis C, Loome J, Milburn L, et al. Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 2020;11:4060. DOI: https://doi.org/10.1038/s41467-020-17878-y
36. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, et al. Genomic analysis of mouse retinal development. PLoS Biol 2004;2:E247. DOI: https://doi.org/10.1371/journal.pbio.0020247
37. Bernhardt A, Haberer S, Xu J, Damerau H, Steffen J, Reichardt C, et al. High salt diet-induced proximal tubular phenotypic changes and sodium-glucose cotransporter-2 expression are coordinated by cold shock Y-box binding protein-1. FASEB J 2021;35:e21912. DOI: https://doi.org/10.1096/fj.202100667RR

Supporting Agencies

Ministry of Science, Research and Cultural Affairs of the State of Brandenburg

How to Cite



1.
Nass AF, Wolf H, Sel S, Kalinski T, Nass N. Immunohistochemical analysis of YB-1 expression in the developing mouse eye. Eur J Histochem [Internet]. 2025 Nov. 3 [cited 2025 Dec. 26];69(4). Available from: https://www.ejh.it/ejh/article/view/4244

Share