Articles

Tanshinone IIA attenuates hepatic stellate cell activation, oxidative stress, and liver fibrosis by inhibiting YAP signaling

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 17 June 2025
596
Views
281
Downloads
13
HTML

Authors

Tanshinone IIA is derived from Salvia miltiorrhiza and has multiple therapeutic targets and functions. The exact therapeutic effects on liver fibrosis as well as the underlying hepatoprotective mechanisms are still lacking. A liver fibrosis model was established via ligation of the common bile duct ligation (BDL). The mice were intraperitoneally administered different concentrations of tanshinone IIA (4 mg/kg, 8 mg/kg) for 2 weeks. Liver function was assessed through hematoxylin and eosin and Sirus red staining. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutathione (GSH) and malondialdehyde (MDA) were quantified by enzyme-linked immunosorbent assay (ELISA), via microplate reader. The total iron content of the liver was quantified via Triple Quad-ICP-MS. TGFβ-induced hepatic stellate cells (HSCs), a cell model of liver fibrosis, were treated with tanshinone IIA at different concentrations (10 mM, 20 mM, 30 mM, 40 mM). The combination of tanshinone IIA with YAP agonists was applied in activated HSCs and animal models. Tanshinone IIA treatment relieved BDL-induced liver fibrosis; mitigated histological liver damage; lowered the serum ALT and AST levels; reduced macrophage infiltration and the MDA and iron contents; and increased the GSH and GPX4 levels by inhibiting YAP signaling. tanshinone IIA also suppressed the activation of HSCs and collagen production through blocking the YAP signaling pathway. The YAP agonist reversed the therapeutic effect of tanshinone IIA on activated HSCs and BDL-induced liver fibrosis. Tanshinone IIA inhibited HSC activation and oxidative stress and alleviated liver fibrosis by inhibiting the YAP signaling pathway.

Downloads

Download data is not yet available.

Citations

Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 2023;20:633-46. DOI: https://doi.org/10.1038/s41575-023-00807-x
2. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature 2020;587:555-66. DOI: https://doi.org/10.1038/s41586-020-2938-9
3. Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E et al. Global epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol 2023;20:388-98. DOI: https://doi.org/10.1038/s41575-023-00759-2
4. Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L, Ritchie L et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat Med 2019;25:1560-5. DOI: https://doi.org/10.1038/s41591-019-0599-8
5. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020;5:245-66. DOI: https://doi.org/10.1016/S2468-1253(19)30349-8
6. Jepsen P, Younossi ZM. The global burden of cirrhosis: A review of disability-adjusted life-years lost and unmet needs. J Hepatol 2021;75 Suppl 1:S3-s13. DOI: https://doi.org/10.1016/j.jhep.2020.11.042
7. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013;123:1887-901. DOI: https://doi.org/10.1172/JCI66028
8. Zhang CY, Yuan WG, He P, Lei JH, Wang CX. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol 2016;22:10512-22. DOI: https://doi.org/10.3748/wjg.v22.i48.10512
9. Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q et al. Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020;155:104720. DOI: https://doi.org/10.1016/j.phrs.2020.104720
10. Du K, Maeso-Díaz R, Oh SH, Wang E, Chen T, Pan C et al. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology 2023;77:1998-2015. DOI: https://doi.org/10.1097/HEP.0000000000000326
11. Tong G, Chen X, Lee J, Fan J, Li S, Zhu K et al. Fibroblast growth factor 18 attenuates liver fibrosis and HSCs activation via the SMO-LATS1-YAP pathway. Pharmacol Res 2022;178:106139. DOI: https://doi.org/10.1016/j.phrs.2022.106139
12. Lu ZN, Niu WX, Zhang N, Ge MX, Bao YY, Ren Y et al. Pantoprazole ameliorates liver fibrosis and suppresses hepatic stellate cell activation in bile duct ligation rats by promoting YAP degradation. Acta Pharmacol Sin 2021;42:1808-20. DOI: https://doi.org/10.1038/s41401-021-00754-w
13. Philippe MA, Ruddell RG, Ramm GA. Role of iron in hepatic fibrosis: one piece in the puzzle. World J Gastroenterol 2007;13:4746-54. DOI: https://doi.org/10.3748/wjg.v13.i35.4746
14. Zhao W, Lei M, Li J, Zhang H, Zhang H, Han Y et al. Yes-associated protein inhibition ameliorates liver fibrosis and acute and chronic liver failure by decreasing ferroptosis and necroptosis. Heliyon 2023;9:e15075. DOI: https://doi.org/10.1016/j.heliyon.2023.e15075
15. Chen L, Jin X, Ma J, Xiang B, Li X. YAP at the progression of inflammation. Front Cell Dev Biol 2023;11:1204033. DOI: https://doi.org/10.3389/fcell.2023.1204033
16. Jiang Z, Gao W, Huang L. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front Pharmacol 2019;10:202. DOI: https://doi.org/10.3389/fphar.2019.00202
17. Yang L, Wang Y, Wang X, Liu Y. Effect of allogeneic umbilical cord mesenchymal stem cell transplantation in a rat model of hepatic cirrhosis. J Tradit Chin Med 2015;35:63-8. DOI: https://doi.org/10.1016/S0254-6272(15)30010-8
18. Chen Z, Xu H. Anti-Inflammatory and Immunomodulatory Mechanism of Tanshinone IIA for Atherosclerosis. Evid Based Complement Alternat Med 2014;2014:267976. DOI: https://doi.org/10.1155/2014/267976
19. Meng Z, Meng L, Wang K, Li J, Cao X, Wu J et al. Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur J Pharm Sci 2015;73:35-43. DOI: https://doi.org/10.1016/j.ejps.2015.03.002
20. Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021;137:111404. DOI: https://doi.org/10.1016/j.biopha.2021.111404
21. Ying Q, Teng Y, Zhang J, Cai Z, Xue Z. Therapeutic Effect of Tanshinone IIA on Liver Fibrosis and the Possible Mechanism: A Preclinical Meta-Analysis. Evid Based Complement Alternat Med 2019;2019:7514046. DOI: https://doi.org/10.1155/2019/7514046
22. Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X et al. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023;13:1071415. DOI: https://doi.org/10.3389/fonc.2023.1071415
23. Li Q, Huang D, Liao W, Su X, Li J, Zhang J et al. Tanshinone IIA regulates CCl(4) induced liver fibrosis in C57BL/6J mice via the PI3K/Akt and Nrf2/HO-1 signaling pathways. J Biochem Mol Toxicol 2024;38:e23648. DOI: https://doi.org/10.1002/jbt.23648
24. Yang N, Chen H, Gao Y, Zhang S, Lin Q, Ji X et al. Tanshinone IIA exerts therapeutic effects by acting on endogenous stem cells in rats with liver cirrhosis. Biomed Pharmacother 2020;132:110815. DOI: https://doi.org/10.1016/j.biopha.2020.110815
25. Wang M, Gong Q, Zhang J, Chen L, Zhang Z, Lu L et al. Characterization of gene expression profiles in HBV-related liver fibrosis patients and identification of ITGBL1 as a key regulator of fibrogenesis. Sci Rep 2017;7:43446. DOI: https://doi.org/10.1038/srep43446
26. Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol 2017;12:153-86. DOI: https://doi.org/10.1146/annurev-pathol-052016-100322
27. Bardou-Jacquet E, Morandeau E, Anderson GJ, Ramm GA, Ramm LE, Morcet J et al. Regression of Fibrosis Stage With Treatment Reduces Long-Term Risk of Liver Cancer in Patients With Hemochromatosis Caused by Mutation in HFE. Clin Gastroenterol Hepatol 2020;18:1851-7. DOI: https://doi.org/10.1016/j.cgh.2019.10.010
28. Zhubanchaliyev A, Temirbekuly A, Kongrtay K, Wanshura LC, Kunz J. Targeting Mechanotransduction at the Transcriptional Level: YAP and BRD4 Are Novel Therapeutic Targets for the Reversal of Liver Fibrosis. Front Pharmacol 2016;7:462. DOI: https://doi.org/10.3389/fphar.2016.00462
29. Xu L, Wettschureck N, Bai Y, Yuan Z, Wang S. Myofibroblast YAP/TAZ is dispensable for liver fibrosis in mice. J Hepatol 2021;75:238-41. DOI: https://doi.org/10.1016/j.jhep.2021.02.026
30. Shan S, Liu Z, Liu Z, Zhang C, Song F. MitoQ alleviates carbon tetrachloride-induced liver fibrosis in mice through regulating JNK/YAP pathway. Toxicol Res (Camb) 2022;11:852-62. DOI: https://doi.org/10.1093/toxres/tfac062
31. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016;7:12502. DOI: https://doi.org/10.1038/ncomms12502
32. Yang T, Wu E, Zhu X, Leng Y, Ye S, Dong R et al. TKF, a mexicanolide-type limonoid derivative, suppressed hepatic stellate cells activation and liver fibrosis through inhibition of the YAP/Notch3 pathway. Phytomedicine 2022;107:154466. DOI: https://doi.org/10.1016/j.phymed.2022.154466
33. Kim CW, Yoon Y, Kim MY, Baik SK, Ryu H, Park IH et al. 12-O-tetradecanoylphorbol-13-acetate Reduces Activation of Hepatic Stellate Cells by Inhibiting the Hippo Pathway Transcriptional Coactivator YAP. Cells 2022;12. DOI: https://doi.org/10.3390/cells12010091
34. Bruschi FV, Tardelli M, Einwallner E, Claudel T, Trauner M. PNPLA3 I148M Up-Regulates Hedgehog and Yap Signaling in Human Hepatic Stellate Cells. Int J Mol Sci 2020;21. DOI: https://doi.org/10.3390/ijms21228711
35. Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A et al. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol 2022;24:694-707. DOI: https://doi.org/10.1093/neuonc/noab244
36. Tsai HC, Tsai MH, Hua CH, Huang CW, Lu CC, Chen KJ et al. Circ_0002722-induced regulation of YAP promotes platinum resistance in oral squamous cell carcinoma: Implications for verteporfin therapy. Biochem Pharmacol 2024:116460. DOI: https://doi.org/10.1016/j.bcp.2024.116460
37. Sahu MR, Ahmad MH, Mondal AC. MST1 selective inhibitor Xmu-mp-1 ameliorates neuropathological changes in a rat model of sporadic Alzheimer's Disease by modulating Hippo-Wnt signaling crosstalk. Apoptosis 2024. DOI: https://doi.org/10.1007/s10495-024-01975-0
38. Zhou X, Wang H, Li D, Song N, Yang F, Xu W. MST1/2 inhibitor XMU-MP-1 alleviates the injury induced by ionizing radiation in haematopoietic and intestinal system. J Cell Mol Med 2022;26:1621-8. DOI: https://doi.org/10.1111/jcmm.17203

How to Cite



1.
Wang D, Tan Q, Zheng Q, Ma Y, Feng L. Tanshinone IIA attenuates hepatic stellate cell activation, oxidative stress, and liver fibrosis by inhibiting YAP signaling. Eur J Histochem [Internet]. 2025 Jun. 17 [cited 2026 Jan. 28];69(3). Available from: https://www.ejh.it/ejh/article/view/4218