Reviews

Forever particles: histochemistry in the plasticene age

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 1 August 2025
503
Views
253
Downloads
3
HTML

Authors

The statement "Plastics define the way we live today" summarizes the findings of the Plastic Europe 2020 final document (https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/). Sadly, this also means that the plastic waste generated over the next decade is likely to become unmanageable. By 2050, plastic usage is expected to triple, resulting in a similar increase in plastic waste, with approximately half of it ending up in landfills. Emerging research indicates that micro and nanoplastics have been found in various human organs, including the gonads, placenta, blood, arteries, lungs, liver, kidney, and even the brain. This raises significant questions about their pervasive presence within our bodies and their potential threat to health. In addition to their harmful effects, these "forever particles" (micro/nanoplastics) can serve as Trojan horses, transporting additional pollutants such as bacteria and heavy metals into our bodies. In this review, we explore key aspects of the plastics crisis and urge the scientific community -especially those in the fields of cytochemistry and histochemistry, which adeptly connect morphology with function- to investigate the harmful effects of micro and nanoplastics that we encounter daily through ingestion or inhalation. This research should focus on various physiological levels, including DNA, cells, and tissues.

Downloads

Download data is not yet available.

Citations

1. Zalasiewicz J, Waters CL, Ivar do Sul JA, Corcoral PL, Barnosky AD, Cearreta A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016;13:4–17. DOI: https://doi.org/10.1016/j.ancene.2016.01.002
2. World Economic Forum, Ellen MacArthur Foundation, Mckinsey & Company. The new plastics economy: Rethinking the future of plastics. World Economic Forum.
3. Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 2019;53:1039-47. DOI: https://doi.org/10.1021/acs.est.8b05297
4. Andrady AL, Barnes PW, Bornman JF, Gouin T, Madronich S, White CC, et al. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci Total Environ 2022;851:158022. DOI: https://doi.org/10.1016/j.scitotenv.2022.158022
5. Song X, Du L, Sima L, Zou D, Qiu X. Effects of micro(nano)plastics on the reproductive system: A review. Chemosphere 2023;336:139138. DOI: https://doi.org/10.1016/j.chemosphere.2023.139138
6. Yee MSL, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, et al. Impact of microplastics and nanoplastics on human health. Nanomaterials 2021;11:496. DOI: https://doi.org/10.3390/nano11020496
7. Winkler AS, Cherubini A, Rusconi F, Santo N, Madaschi L, Pistoni C, et al. Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. Environ Int 2022;163:107200. DOI: https://doi.org/10.1016/j.envint.2022.107200
8. Shen M, Li Y, Song B, Zhou C, Gong J, Zeng G. Smoked cigarette butts: Unignorable source for environmental microplastic fibers. Sci Total Environ 2021;791:148384. DOI: https://doi.org/10.1016/j.scitotenv.2021.148384
9. Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowski C, Reto G. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual Res 2018;18:2014-28. DOI: https://doi.org/10.4209/aaqr.2018.03.0099
10. Liu L, Xu K, Zhang B, Jiang W. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci Total Environ 2021; 779:146523. DOI: https://doi.org/10.1016/j.scitotenv.2021.146523
11. Khanl A, Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience 2023;26:106061 DOI: https://doi.org/10.1016/j.isci.2023.106061
12. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Nanomater 2018;344:179-199. DOI: https://doi.org/10.1016/j.jhazmat.2017.10.014
13. Amato-Lourenço LF, Carvalho-Oliveira R, Ribeiro Júnior G, Dos Santos Galvão L, Ando RA, Mauad T. Presence of airborne microplastics in human lung tissue. J Hazard Mater 2021;416:126124. DOI: https://doi.org/10.1016/j.jhazmat.2021.126124
14. Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 2020;17:24. DOI: https://doi.org/10.1186/s12989-020-00358-y
15. Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int 2021;146:106274. DOI: https://doi.org/10.1016/j.envint.2020.106274
16. Leslie HA, Van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int 2022;163:107199. DOI: https://doi.org/10.1016/j.envint.2022.107199
17. Aitken RJ. What is driving the global decline of human fertility? Need for a multidisciplinary approach to the underlying mechanisms. Front Reprod Health 2024;6:1364352. DOI: https://doi.org/10.3389/frph.2024.1364352
18. Hong Y, Wu S, Wei G. Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. Sci Total Environ 2023;903:166258. DOI: https://doi.org/10.1016/j.scitotenv.2023.166258
19. Yu HR, Sheen JM, Tiao MM. The impact of maternal nanoplastic and microplastic particle exposure on mammal's offspring. Cells 2024;13:1380. DOI: https://doi.org/10.3390/cells13161380
20. Darbre P.D. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res 2020;112:1300–7. DOI: https://doi.org/10.1002/bdr2.1778
21. Haddadi A, Kessabi K, Boughammoura S, Rhouma MB, Mlouka R, Banni M, Messaoudi M. Exposure to microplastics leads to a defective ovarian function and change in cytoskeleton protein expression in rat Environ Sci Pollut Res Int 2022; 29:34594–34606. DOI: https://doi.org/10.1007/s11356-021-18218-3
22. Wang M, Wu Y, Li G, Xiong Y, Zhang Y, Zhang M. The hidden threat: Unraveling the impact of microplastics on reproductive health. Sci Total Environ 2024;935:173177. DOI: https://doi.org/10.1016/j.scitotenv.2024.173177
23. Yang ZS, Bai YL, Jin CH, Na N, Zhang R, Gao Y, et al. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure: nanoplastics versus microplastics. Biomed Environ Sci 2022;35:1025-37.
24. Hou B, Wang F, Liu T, Wang Z. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice. J Hazard Mater 2020;405:124028. DOI: https://doi.org/10.1016/j.jhazmat.2020.124028
25. Xie X, Deng T, Duan J, Xie J, Chen M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol Environ Saf 2019;190:110133. DOI: https://doi.org/10.1016/j.ecoenv.2019.110133
26. Jin H, Ma T, Sha X, Liu Z, Zhou Y, Meng X, et al. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater 2021;401:123430. DOI: https://doi.org/10.1016/j.jhazmat.2020.123430
27. Amereh F, Babaei M, Eslami A, Fazelipour S, Rafiee M. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge. Environ Pollut 2020;261:114158. DOI: https://doi.org/10.1016/j.envpol.2020.114158
28. Tombul OK, Akdağ AD, Thomas PB, Kaluç N. Assessing the impact of sub-chronic polyethylene terephthalate nanoplastic exposure on male reproductive health in mice. Toxicol Appl Pharmacol 2025; 495:117235. DOI: https://doi.org/10.1016/j.taap.2025.117235
29. Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024;22:141. DOI: https://doi.org/10.1186/s12958-024-01314-7
30. Liu Z, Zhuan Q, Zhang L, Meng L, Fu X, Hou Y. Polystyrene microplastics induced female reproductive toxicity in mice. J Hazard Mat 2022;424:127629. DOI: https://doi.org/10.1016/j.jhazmat.2021.127629
31. Lliberos C, Liew SH, Zareie P, La Gruta NL, Mansell A, Hutt K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep 2021;11:278. DOI: https://doi.org/10.1038/s41598-020-79488-4
32. Afreen V, Hashmi K, Nasir R. Adverse health effects and mechanisms of microplastics on female reproductive system: a descriptive review. Environ Sci Pollut Res Int 2023;30:76283–76296. DOI: https://doi.org/10.1007/s11356-023-27930-1
33. Wan S, Wang X, Chen W, Wang M, Zhao J, Xu Z. Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage. Part Fibre Toxicol 2024;21:13. DOI: https://doi.org/10.1186/s12989-024-00574-w
34. Wei Z, Wang Y, Wang S, Xie J, Han Q, Chen M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology 2022;465:153059. DOI: https://doi.org/10.1016/j.tox.2021.153059
35. Zhou C, Flaws JA. Effects of an environmentally relevant phthalate mixture on cultured mouse antral follicles. Toxicol Sci 2017;156:217-229. DOI: https://doi.org/10.1093/toxsci/kfw245
36. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol 2020;30:921–925. DOI: https://doi.org/10.1016/j.cub.2020.06.081
37. Lv J, He Q, Yan Z, Xie Y, Wu X, Li A, et al. Inhibitory impact of prenatal exposure to nano-polystyrene particles on the MAP2K6/p38 MAPK axis inducing embryonic developmental abnormalities in mice. Toxics 2024;12:370. DOI: https://doi.org/10.3390/toxics12050370
38. Yin L, Chen B, Xia B, Shi X, Qu K. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mat 2018;360:97-105. DOI: https://doi.org/10.1016/j.jhazmat.2018.07.110
39. Ammar E, Hamed M, Mohamed MS, Sayed AEDH. The synergetic effects of 4-nonylphenol and polyethylene microplastics in Cyprinus carpio juveniles using blood biomarkers. Sci Rep 2023;13:11635. DOI: https://doi.org/10.1038/s41598-023-38636-2
40. Yang Q, Peng Y, Wu X, Cao X, Zhang P, Liang Z, et al. Microplastics in human skeletal tissues: Presence, distribution and health implications. Environ Int 2025;196:109316. DOI: https://doi.org/10.1016/j.envint.2025.109316
41. Amato-Lourenço LF, Dantas KC, Júnior GR, Paes VR, Ando RA, de Oliveira Freitas R, et al. Microplastics in the olfactory bulb of the human brain. JAMA Netw Open 2024;7:e2440018. DOI: https://doi.org/10.1001/jamanetworkopen.2024.40018
42. Nihart AJ, Garcia MA, El Hayek E, Liu R, Olewine M, Kingston JD, et al. Bioaccumulation of microplastics in decedent human brains. Nat Med 2025;31:1114–9. DOI: https://doi.org/10.1038/s41591-024-03453-1
43. Lin P, Tong X, Xue F, Qianru C, Xinyu T, Zhe L, et al. Polystyrene nanoplastics exacerbate lipopolysaccharide-induced myocardial fibrosis and autophagy in mice via ROS/TGF-β1/Smad. Toxicology 2022;480:153338. DOI: https://doi.org/10.1016/j.tox.2022.153338
44. Lu T, Yuan X, Sui C, Yang C, Li D, Liu H, et al. Exposure to polypropylene microplastics causes cardiomyocyte apoptosis through oxidative stress and activation of the MAPK-Nrf2 signaling pathway. Environ Toxicol 2024;39:5371-5381. DOI: https://doi.org/10.1002/tox.24411
45. Gałęcka I, Szyryńska N, Całka, J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024;21:5 DOI: https://doi.org/10.1186/s12989-024-00566-w
46. Gałęcka I, Całka J. Oral exposure to microplastics affects the neurochemical plasticity of reactive neurons in the porcine jejunum. Nutrients 2024;16:2268. DOI: https://doi.org/10.3390/nu16142268
47. Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, et al. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024;284:109981. DOI: https://doi.org/10.1016/j.cbpc.2024.109981
48. Charlton-Howard HS, Bond AL, Rivers-Auty J, Lavers JL. Plasticosis: Characterising macro- and microplastic-associated fibrosis in seabird tissues. J Hazard Mat 2023;450:131090. DOI: https://doi.org/10.1016/j.jhazmat.2023.131090
49. Mu Y, Sun J, Li Z, Zhang W, Liu Z, Li C, et al. Activation of pyroptosis and ferroptosis is involved in the hepatotoxicity induced by polystyrene microplastics in mice. Chemosphere 2022;291:132944. DOI: https://doi.org/10.1016/j.chemosphere.2021.132944
50. Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, et al. Microplastics in the human body: exposure, detection, and risk of carcinogenesis: a state-of-the-art review. Cancers 2024;16:3703. DOI: https://doi.org/10.3390/cancers16213703
51. Huang T, Zhang W, Lin T, Liu S, Sun Z, Liu F, et al. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring. Food Chem Toxicol 2022;160:112803. DOI: https://doi.org/10.1016/j.fct.2021.112803
52. Bengalli R, Zerboni A, Bonfanti P, Saibene M, Mehn D, Cella C, et al. Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J Appl Toxicol 2022;42:2030-2044. DOI: https://doi.org/10.1002/jat.4372
53. Traversa A, Mari E, Pontecorvi P, Gerini G, Romano E, Megiorni F, et al. Polyethylene micro/nanoplastics exposure induces epithelial-mesenchymal transition in human bronchial and alveolar epithelial cells. Int J Mol Sci 2024;25:10168. DOI: https://doi.org/10.3390/ijms251810168
54. Jin W, Zhang W, Tang H, Wang P, Zhang Y, Liu S, et al. Microplastics exposure causes the senescence of human lung epithelial cells and mouse lungs by inducing ROS signaling. Environ Int 2024;185:108489. DOI: https://doi.org/10.1016/j.envint.2024.108489
55. Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ 2022;831:154907. DOI: https://doi.org/10.1016/j.scitotenv.2022.154907
56. Li X, Zhang T, Lv W, Wang H, Chen H, Xu Q, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf 2022;232:113238. DOI: https://doi.org/10.1016/j.ecoenv.2022.113238
57. Cao J, Xu R, Geng Y, Xu S, Guo M. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environ pollution 2023;320:121068. DOI: https://doi.org/10.1016/j.envpol.2023.121068
58. Woo JH, Seo HJ, Lee JY, Lee I, Jeon K, Kim B, Lee K. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Part Fibre Toxicol 2023;20:2. DOI: https://doi.org/10.1186/s12989-022-00512-8
59. Tomonaga T, Higashi H, Izumi H, Nishida C, Kawai N, Sato K, et al. Investigation of pulmonary inflammatory responses following intratracheal instillation of and inhalation exposure to polypropylene microplastics. Part Fibre Toxicol 2024;21:29. DOI: https://doi.org/10.1186/s12989-024-00592-8
60. Wu Q, Liu C, Wang W, Qi H, Liu X, Zhang Y, et al. Polystyrene nanoplastics-induced lung apoptosis and ferroptosis via ROS-dependent endoplasmic reticulum stress. Sci Total Environ 2024;912:169260. DOI: https://doi.org/10.1016/j.scitotenv.2023.169260
61. Wang L, Pei W, Li J, Feng Y, Gao X, Jiang P, et al. Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. Ecotoxicol Environ Saf 2024;271:115970. DOI: https://doi.org/10.1016/j.ecoenv.2024.115970
62. Zhang Q, Wang F, Xu S, Cui J, Li K, Shiwen X, Guo MY. Polystyrene microplastics induce myocardial inflammation and cell death via the TLR4/NF-κB pathway in carp. Fish Shellfish Immunol 2023;135:108960. DOI: https://doi.org/10.1016/j.fsi.2023.108690
63. Song Z, Wu H, Fang X, Feng X, Zhou L. The cardiovascular toxicity of polystyrene microplastics in rats: based on untargeted metabolomics analysis. Front Pharmacol 2024;15:1336369. DOI: https://doi.org/10.3389/fphar.2024.1336369
64. Yang L, Baumann C, De La Fuente R, Viveiros MM. Bisphenol exposure disrupts cytoskeletal organization and development of pre-implantation embryos. Cells 2022;20:3233. DOI: https://doi.org/10.3390/cells11203233
65. Liu Y, Hao F, Liang H, Liu W, Guo Y. Exposure to polystyrene nanoplastics impairs sperm metabolism and pre-implantation embryo development in mice. Front Cell Dev Biol 2025; 13:1562331. DOI: https://doi.org/10.3389/fcell.2025.1562331
66. Wang M, Rücklin M, Poelmann RE, de Mooij CL, Fokkema M, Lamers GEM, et al. Nanoplastics causes extensive congenital malformations during embryonic development by passively targeting neural crest cells. Environ Int 2023;173:107865. DOI: https://doi.org/10.1016/j.envint.2023.107865
67. Shengchen W, Jing L, Yujie Y, Yue W, Shiwen X. Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. J Hazard Mat 2021;417:125962. DOI: https://doi.org/10.1016/j.jhazmat.2021.125962
68. Yang Y, Liu H, Zou D, Ji F, Lv R, Wu H, et al. Polystyrene microplastics exposure reduces meat quality and disturbs skeletal muscle angiogenesis via thrombospondin 1. Food Res Int 2024;190:114581. DOI: https://doi.org/10.1016/j.foodres.2024.114581
69. An R, Wang X, Yang L, Zhang J, Wang N, Xu F, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021;449:152665. DOI: https://doi.org/10.1016/j.tox.2020.152665
70. Hou J, Lei Z, Cui L, Hou Y, Yang L, An R, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol Environ Saf 2021;212:112012. DOI: https://doi.org/10.1016/j.ecoenv.2021.112012
71. Wang W, Guan J, Feng Y, Liu S, Zhao Y, Xu Y, et al. Polystyrene microplastics induced ovarian toxicity in juvenile rats associated with oxidative stress and activation of the PERK-eIF2α-ATF4-CHOP signaling pathway. Toxics 2023;11:225. DOI: https://doi.org/10.3390/toxics11030225
72. Zeng L, Zhou C, Xu W, Huang Y, Wang W, Ma Z, et al. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. Ecotoxicol Environ Saf 2023;257:114941. DOI: https://doi.org/10.1016/j.ecoenv.2023.114941
73. Wang Z, Zhang R, Zhang Y, Xiong Y, Zhang M. The risk of short-term microplastic exposure on female reproductive function: A rat model study. NanoImpact 2025;37:100545. DOI: https://doi.org/10.1016/j.impact.2025.100545
74. Garcia MA, Liu R, Nihart A, El Hayek E, Castillo E, Barrozo ER, et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry. Toxicol Sci 2024;191:81-88. DOI: https://doi.org/10.1093/toxsci/kfae021
75. Yang Q, Peng Y, Wu X, Cao X, Zhang P, Liang Z, et al. Microplastics in human skeletal tissues: Presence, distribution and health implications. Environ Int 2025;196:109316. DOI: https://doi.org/10.1016/j.envint.2025.109316
76. Tang X, Fan X, Xu T, He Y, Chi Q, Li Z, Li S. Polystyrene nanoplastics exacerbated lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. Environ Toxicol 2022;37:2552-65. DOI: https://doi.org/10.1002/tox.23618
77. Li S, Wang Q, Yu H, Yang L, Sun Y, Xu N, et al. Polystyrene microplastics induce blood-testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. Environ Sci Pollut Res Int 2021;2:47921-31. DOI: https://doi.org/10.1007/s11356-021-13911-9
78. Wang X, Zhang X, Sun K, Wang S, Gong D. Polystyrene microplastics induce apoptosis and necroptosis in swine testis cells via ROS/MAPK/HIF1α pathway. Environ Toxicol 2022;37:2483-92. DOI: https://doi.org/10.1002/tox.23611
79. Wu D, Zhang M, Bao TT, Lan H. Long-term exposure to polystyrene microplastics triggers premature testicular aging. Part Fibre Toxicol 2023;20:35. DOI: https://doi.org/10.1186/s12989-023-00546-6
80. Sun Z, Wen Y, Zhang F, Fu Z, Yuan Y, Kuang H, et al. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in Leydig cells. Ecotoxicol Environ Saf 2023;255:114796. DOI: https://doi.org/10.1016/j.ecoenv.2023.114796
81. Jiang J, Shu Z, Qiu L. Adverse effects and potential mechanisms of polystyrene microplastics (PS-MPs) on the blood-testis barrier. Environ Geochem Health 2024;46:238. DOI: https://doi.org/10.1007/s10653-024-02033-z
82. Jeong S, Lee G, Park S, Son M, Lee S, Ryu B. Unseen threats: the long-term impact of PET-microplastics on development of male reproductive over a lifetime. Adv Sci 2025;12:e2407585. DOI: https://doi.org/10.1002/advs.202407585
83. Zhao Q, Zhu L, Weng J, Jin Z, Cao Y, Jiang H, Zhang Z. Detection and characterization of microplastics in the human testis and semen. Sci Total Environ 2023;877:162713. DOI: https://doi.org/10.1016/j.scitotenv.2023.162713
84. Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Part Fibre Toxicol 2020;17:57. DOI: https://doi.org/10.1186/s12989-020-00387-7
85. 85-Jia R, Han J, Liu X, Li K, Lai W, Bian L, et al. Exposure to polypropylene microplastics via oral ingestion induces colonic apoptosis and intestinal barrier damage through oxidative stress and inflammation in mice. Toxics 2023;11:127. DOI: https://doi.org/10.3390/toxics11020127
86. Saleh SMM, Abdel-Zaher S, Mohamed MS, Sayed AEH. Microplastics induced ileum damage: Morphological and immunohistochemical study. Microsc Res Tech 2024;88:251–269. DOI: https://doi.org/10.1002/jemt.24696
87. Kamel NA, Bashir DW, El-Leithy EMM, Tohamy AF, Rashad MM, Ali GE, El-Saba AAA. Polyethylene terephthalate nanoplastics caused hepatotoxicity in mice can be prevented by betaine: Molecular and immunohistochemical insights. J Biochem Mol Toxicol 2024;38:e70088. DOI: https://doi.org/10.1002/jbt.70088
88. Li Q, Zhu K, Huang L, Niu X, Li L, Gao L, Xia Z. Polystyrene microplastics induce liver fibrosis and lipid deposition in mice through three hub genes revealed by the RNA-seq. Sci Rep 2025;15:2583. DOI: https://doi.org/10.1038/s41598-025-86810-5
89. Wu Y, Wang J, Zhao T, Sun M, Xu M, Che S, et al. Polystyrene nanoplastics lead to ferroptosis in the lungs. J Adv Res 2024;56:31-41. DOI: https://doi.org/10.1016/j.jare.2023.03.003
90. Ali W, Chen Y, Shah MG, Buriro RS, Sun J, Liu Z, Zou H. Ferroptosis: First evidence in premature duck ovary induced by polyvinyl chloride microplastics. Sci Total Environ 2024;933:173032. DOI: https://doi.org/10.1016/j.scitotenv.2024.173032
91. Yang S, Zhang T, Ge Y, Yin L, Pu Y, Liang G. Inhalation exposure to polystyrene nanoplastics induces chronic obstructive pulmonary disease-like lung injury in mice through multi-dimensional assessment. Environ Pollut 2024;347:123633. DOI: https://doi.org/10.1016/j.envpol.2024.123633
92. Vasse GF, Melgert BN. Microplastic and plastic pollution: impact on respiratory disease and health. Eur Respir Rev 2024;172:230226. DOI: https://doi.org/10.1183/16000617.0226-2023
93. Lee SE, Kim DY, Jeong TS, Park YS. Micro- and nano-plastic-induced adverse health effects on lungs and kidneys linked to oxidative stress and inflammation. Life 2025;15:392. DOI: https://doi.org/10.3390/life15030392
94. Kopatz V, Wen K, Kovács T, Keimowitz AS, Pichler V, Widder J, et al. Micro- and nanoplastics breach the blood-brain barrier (BBB): biomolecular corona's role revealed. Nanomaterials (Basel) 2023;19;13:1404. DOI: https://doi.org/10.3390/nano13081404
95. Mandwie M, Piper JA, Gorrie CA, Keay KA, Musumeci G, Al-Badri G, Castorina A. Rapid GFAP and Iba1 expression changes in the female rat brain following spinal cord injury. Neural Regen Res 2022;17:378-385. DOI: https://doi.org/10.4103/1673-5374.317982
96. Lee CW, Hsu LF, Wu Il, Wang YL, Chen WC, Liu YJ, et al. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J Hazard Mat 2022;430:128431. DOI: https://doi.org/10.1016/j.jhazmat.2022.128431
97. Gaspar L, Bartman S, Coppotelli G, Ross JM. Acute exposure to microplastics induced changes in behavior and inflammation in young and old mice. Int J Mol Sci 2023;24:12308. DOI: https://doi.org/10.3390/ijms241512308
98. Jeong J, Quynh Mai NT, Moon BS, Choi JK. Impact of polystyrene microplastics (PS-MPs) on the entire female mouse reproductive cycle: Assessing reproductive toxicity of microplastics through in vitro follicle culture. Ecotoxicol Environ Saf 2025;297:118228. DOI: https://doi.org/10.1016/j.ecoenv.2025.118228
99. Wu H, Liu Q, Yang N, Xu S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci Total Environ 2023;871:161962. DOI: https://doi.org/10.1016/j.scitotenv.2023.161962
100. Yang J, Kamstra J, Legler J, Aardema H. The impact of microplastics on female reproduction and early life. Anim Reprod 2023;20:e202330037. DOI: https://doi.org/10.1590/1984-3143-ar2023-0037
101. Mínguez-Alarcón L, Chiu YH, Gaskins AJ, Williams PL, Ehrlich S, Hauser R. Urinary bisphenol A concentrations and ovarian response among women undergoing fertility treatment. Environ Health Perspectives, 2016;124:867–873.
102. Zhao D, Zhang H, Wang S, Miao M, Yuan W, Zhu G. Exposure to bisphenol A and reproductive hormones in women: A study of menstrual cycle. Environ Health, 2017;16: 1–7.
103. Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and mechanisms of phthalates' action on reproductive processes and reproductive health: a literature review. Int J Environ Res Public Health 2020;17:6811. DOI: https://doi.org/10.3390/ijerph17186811
104. Bruner-Tran KL, Ostee KG. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol 2011;31:344–350. DOI: https://doi.org/10.1016/j.reprotox.2010.10.003
105. Ryu DY, Pang WK, Rahman MS, Park YJ, Pang MG. Differential susceptibility of Leydig and Sertoli cells to bisphenol A. Toxicol 2025;154182. DOI: https://doi.org/10.1016/j.tox.2025.154182
106. Grillo G, Falvo S, Latino D, Chieffi Baccari G, Venditti M, Di Fiore MM, et al. Polystyrene microplastics impair the functions of cultured mouse Leydig (TM3) and Sertoli (TM4) cells. By inducing mitochondrial-endoplasmic reticulum damage. Ecotoxicol Environ Saf 2024;274:116202. DOI: https://doi.org/10.1016/j.ecoenv.2024.116202
107. Liu Y, Li X, Xiong Y. Chronic polystyrene microplastic exposure reduces testosterone levels in mice through mitochondrial oxidative stress and BAX/BCL2-mediatged apoptosis. Toxics 2024;12:561. DOI: https://doi.org/10.3390/toxics12080561
108. Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, et al. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ Pollution 2021;289:117904. DOI: https://doi.org/10.1016/j.envpol.2021.117904
109. Hu R, Yao C, Qu J, Yu S, Han Y, Chen G, et al. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. Ecotoxicol Environ Saf 2022;248:114332. DOI: https://doi.org/10.1016/j.ecoenv.2022.114332
110. Zhang X, Zhang Y, Li H, Wang H. Expression of estrogen receptors in testicular tissues of men with idiopathic infertility: possible role of environmental endocrine disruptors. Fertil Steril 2013;100:1194–1201.
111. Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 2017;58:60-71. DOI: https://doi.org/10.1002/em.22072
112. Zhang C, Zhang G, Sun K, Ren J, Zhou J, Liu X. Association of mixed exposure to microplastics with sperm dysfunction: a multi-site study in China. EbioMedicine 2024;108:105369. DOI: https://doi.org/10.1016/j.ebiom.2024.105369
113. Montano L, Giorgini E, Natarstefano V, Notari T, Ricciardi M, Piscopo M, et al. Raman microspectroscopy evidence of microplastics in human seme. Sci Total Env 2023;901:165922. DOI: https://doi.org/10.1016/j.scitotenv.2023.165922

Supporting Agencies

Fondazione Umberto Veronesi per il progresso delle scienze

How to Cite



1.
Camia B, Casasco A, Monti M. Forever particles: histochemistry in the plasticene age. Eur J Histochem [Internet]. 2025 Aug. 1 [cited 2025 Dec. 28];69(3). Available from: https://www.ejh.it/ejh/article/view/4226

Share