Articles

Aloe-emodin ameliorates chronic kidney disease fibrosis by inhibiting PI3K-mediated signaling pathway

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 6 August 2025
583
Views
296
Downloads
8
HTML

Authors

Chronic kidney disease (CKD) impacts a vast number of individuals worldwide, culminating in renal fibrosis. Renal fibrosis serves as the main reason for end-stage renal failure. However, the current targeted treatment methods for renal fibrosis remain scarce. Aloe-emodin (AE) is a naturally occurring compound discovered in rhubarb and aloe. In this research, we investigated the underlying mechanisms of AE in adenine-induced mouse renal fibrosis models and TGFβ-1 stimulated renal tubular epithelial cells (HK-2). It was discovered that AE not only decelerated the decline of renal function in adenine-treated mice but also suppressed the expression of Collagen I and Fibronectin. Furthermore, network pharmacology analysis suggested that AE's treatment of renal fibrosis might function via the PI3K/Akt/GSK3β signaling pathway. In vivo and in vitro Western blot and immunofluorescence findings demonstrate that AE significantly resists the advancement of renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) and vimentin. Simultaneously, findings from 740Y-P (a PI3K agonist) and siRNA (PI3K) indicate that AE inhibits the expression of the PI3K/Akt/GSK3β cascade by lowering PI3K's phosphorylation level. From a mechanistic perspective, through molecular docking and plasmid transfection, the specific base sequence of PI3K in HK-2 cells was altered for experimental validation. The outcomes illustrate that AE can directly bind with PI3K, inhibiting its activation, impeding the PI3K/Akt/GSK3β signal transmission, thereby ultimately suppressing renal fibrosis progression. In conclusion, PI3K/Akt/GSK3β is a potential therapeutic target for CKD-related renal fibrosis, making AE a promising new treatment alternative for this condition.

Downloads

Download data is not yet available.

Citations

1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382:260-72. DOI: https://doi.org/10.1016/S0140-6736(13)60687-X
2. Liu Y. Kidney fibrosis: fundamental questions, challenges, and perspectives. Integr Med Nephrol Androl 2024;11:e24-00027. DOI: https://doi.org/10.1097/IMNA-D-24-00027
3. Rosa BA, Ahmed M, Singh DK, Choreno-Parra JA, Cole J, Jimenez-Alvarez LA, et al. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Commun Biol 2021;4:290. DOI: https://doi.org/10.1038/s42003-021-01829-4
4. Zhang YY, Tan RZ, Yu Y, Niu YY, Yu C. LncRNA GAS5 protects against TGF-beta-induced renal fibrosis via the Smad3/miRNA-142-5p axis. Am J Physiol-Renal 2021;321:F517-26. DOI: https://doi.org/10.1152/ajprenal.00085.2021
5. Rui-Zhi T, Hui D, Jian-Chun L, Xia Z, Xiao-Jia W, Dan W, et al. Astragalus mongholicus bunge and panax notoginseng formula (A&P) combined with bifidobacterium contribute a renoprotective effect in chronic kidney disease through inhibiting macrophage inflammatory response in kidney and intestine. Front Physiol 2020;11:583668. DOI: https://doi.org/10.3389/fphys.2020.583668
6. Zhu W, Chen M, Wang Y, Chen Y, Zhang Y, Wang Y, et al. Regulation of renal lipid deposition in diabetic nephropathy on morroniside via inhibition of NF-KB/TNF-a/SREBP1c signaling pathway. Chem-Biol Interact 2023;385:110711. DOI: https://doi.org/10.1016/j.cbi.2023.110711
7. Zhu T, Du Y, Xuan M, Guo C, Rao X. Clinical characteristics and Chinese Medicine therapy of chronic kidney disease combined with cardiovascular disease. Integr Med Nephrol Androl 2023;10:e00023. DOI: https://doi.org/10.1097/IMNA-D-22-00023
8. Chen R, Zhang J, Hu Y, Wang S, Chen M, Wang Y. Potential antineoplastic effects of Aloe-emodin: a comprehensive review. Am J Chinese Med 2014;42:275-88. DOI: https://doi.org/10.1142/S0192415X14500189
9. Dong X, Zeng Y, Liu Y, You L, Yin X, Fu J, et al. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother Res 2020;34:270-81. DOI: https://doi.org/10.1002/ptr.6532
10. Lian LH, Park EJ, Piao HS, Zhao YZ, Sohn DH. Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway. Basic Clin Pharmacol 2005;96:495-502. DOI: https://doi.org/10.1111/j.1742-7843.2005.pto_96614.x
11. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. New Engl J Med 1993;328:1828-35. DOI: https://doi.org/10.1056/NEJM199306243282508
12. Woo SW, Nan JX, Lee SH, Park EJ, Zhao YZ, Sohn DH. Aloe emodin suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Pharmacol Toxicol 2002;90:193-8. DOI: https://doi.org/10.1034/j.1600-0773.2002.900404.x
13. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 2016;12:325-38. DOI: https://doi.org/10.1038/nrneph.2016.48
14. Yang F, Li T, Zhang XQ, Gong Y, Su H, Fan J, et al. Screening of active components in Astragalus mongholicus Bunge and Panax notoginseng formula for anti-fibrosis in CKD: nobiletin inhibits Lgals1/PI3K/AKT signaling to improve renal fibrosis. Renal Failure 2024;46:2375033. DOI: https://doi.org/10.1080/0886022X.2024.2375033
15. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 2009;20:765-76. DOI: https://doi.org/10.1681/ASN.2008060566
16. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006;69:213-7. DOI: https://doi.org/10.1038/sj.ki.5000054
17. Jia J, Xu LH, Deng C, Zhong X, Xie KH, Han RY, et al. Hederagenin ameliorates renal fibrosis in chronic kidney disease through blocking ISG15 regulated JAK/STAT signaling. Int Immunopharmacol 2023;118:110122. DOI: https://doi.org/10.1016/j.intimp.2023.110122
18. Wu S, Ge Y, Lin K, Liu Q, Zhou H, Hu Q, et al. Telomerase RNA TERC and the PI3K-AKT pathway form a positive feedback loop to regulate cell proliferation independent of telomerase activity. Nucleic Acids Res 2022;50:3764-76. DOI: https://doi.org/10.1093/nar/gkac179
19. Zhang Z, Wu W, Fang X, Lu M, Wu H, Gao C, et al. Sox9 promotes renal tubular epithelial‑mesenchymal transition and extracellular matrix aggregation via the PI3K/AKT signaling pathway. Mol Med Rep 2020;22:4017-30. DOI: https://doi.org/10.3892/mmr.2020.11488
20. Liu B, Deng J, Jie X, Lu F, Liu X, Zhang D. Protective effects of the Bupi Yishen formula on renal fibrosis through PI3K/AKT signaling inhibition. J Ethnopharmacol 2022;293:115242. DOI: https://doi.org/10.1016/j.jep.2022.115242
21. Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 2002;277:30935-41. DOI: https://doi.org/10.1074/jbc.M201919200
22. Singh SP, Tao S, Fields TA, Webb S, Harris RC, Rao R. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech 2015;8:931-40. DOI: https://doi.org/10.1242/dmm.020511
23. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 2003;4:2. DOI: https://doi.org/10.1186/1471-2105-4-2
24. Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 2022;50:W159-64. DOI: https://doi.org/10.1093/nar/gkac394
25. Dou F, Liu Y, Liu L, Wang J, Sun T, Mu F, et al. Aloe-emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuv Res 2019;22:218-29. DOI: https://doi.org/10.1089/rej.2018.2104
26. El-Abhar H, Abd EFM, Wadie W, El-Tanbouly DM. Cilostazol disrupts TLR-4, Akt/GSK-3beta/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 2018;13:e0203837. DOI: https://doi.org/10.1371/journal.pone.0203837
27. Liu S, Chen X, Zhang S, Wang X, Du X, Chen J, et al. miR‑106b‑5p targeting SIX1 inhibits TGF‑beta1‑induced pulmonary fibrosis and epithelial‑mesenchymal transition in asthma through regulation of E2F1. Int J Mol Med 2021;47:04855. DOI: https://doi.org/10.3892/ijmm.2021.4857
28. Wang Y, Liu P, Ma G, Wu C, Zhu W, Sun P, et al. Mechanism of dioscin ameliorating renal fibrosis through NF‑kappaB signaling pathway‑mediated inflammatory response. Mol Med Rep 2023;27:93. DOI: https://doi.org/10.3892/mmr.2023.12980
29. Feng X, Chen L, Guo W, Zhang Y, Lai X, Shao L, et al. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater 2018;81:278-92. DOI: https://doi.org/10.1016/j.actbio.2018.09.057
30. Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, et al. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget 2016;7:57050-65. DOI: https://doi.org/10.18632/oncotarget.10959
31. Tan RZ, Li JC, Liu J, Lei XY, Zhong X, Wang C, et al. BAY61-3606 protects kidney from acute ischemia/reperfusion injury through inhibiting spleen tyrosine kinase and suppressing inflammatory macrophage response. Faseb J 2020;34: 15029-46. DOI: https://doi.org/10.1096/fj.202000261RRR
32. Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 2012;20:1251-60. DOI: https://doi.org/10.1038/mt.2012.36
33. Qu H, Liu L, Liu Z, Qin H, Liao Z, Xia P, et al. Blocking TBK1 alleviated radiation-induced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation. Exp Mol Med 2019;51:1-17. DOI: https://doi.org/10.1038/s12276-019-0240-4
34. Ma Y, Wang M, Li N, Wu R, Wang X. Bleomycin-induced nuclear factor-kappaB activation in human bronchial epithelial cells involves the phosphorylation of glycogen synthase kinase 3beta. Toxicol Lett 2009;187:194-200. DOI: https://doi.org/10.1016/j.toxlet.2009.02.023
35. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PLoS One 2016;11:e0158765. DOI: https://doi.org/10.1371/journal.pone.0158765
36. Mu L, Zhu L, Feng Y, Chen N, Wang F, He L, et al. Nephropathy 1st inhibits renal fibrosis by activating the PPARgamma signaling pathway. Front Pharmacol 2022;13:992421. DOI: https://doi.org/10.3389/fphar.2022.992421
37. Walther CP, Winkelmayer WC, Richardson PA, Virani SS, Navaneethan SD. Renin-angiotensin system blocker discontinuation and adverse outcomes in chronic kidney disease. Nephrol Dial Transpl 2021;36:1893-9. DOI: https://doi.org/10.1093/ndt/gfaa300
38. Ni YH, Deng HF, Zhou L, Huang CS, Wang NN, Yue LX, et al. Ginsenoside Rb1 ameliorated bavachin-induced renal fibrosis via suppressing Bip/eIF2alpha/CHOP signaling-mediated EMT. Front Pharmacol 2022;13:872474. DOI: https://doi.org/10.3389/fphar.2022.872474
39. Xiao D, Zhang Y, Wang R, Fu Y, Zhou T, Diao H, et al. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3. Acta Pharm Sin B 2019;9:724-33. DOI: https://doi.org/10.1016/j.apsb.2019.04.003
40. Zhang Y, Song Z, Huang S, Zhu L, Liu T, Shu H, et al. Aloe emodin relieves Ang II-induced endothelial junction dysfunction via promoting ubiquitination mediated NLRP3 inflammasome inactivation. J Leukocyte Biol 2020;108:1735-46. DOI: https://doi.org/10.1002/JLB.3MA0520-582R
41. Liang Y, Jing Z, Deng H, Li Z, Zhuang Z, Wang S, et al. Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3beta signaling pathway. Biochem Bioph Res Co 2015;463:70-5. DOI: https://doi.org/10.1016/j.bbrc.2015.05.020
42. Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radical Bio Med 2016;93:94-109. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.02.002
43. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000;15:290-301. DOI: https://doi.org/10.1007/s004670000461
44. Cai FF, Bian YQ, Wu R, Sun Y, Chen XL, Yang MD, et al. Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis. Biomed Pharmacother 2019;114:108863. DOI: https://doi.org/10.1016/j.biopha.2019.108863
45. Wei S, Wang Q, Zhou H, Qiu J, Li C, Shi C, et al. miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther-Nucl Acids 2019;16:758-69. DOI: https://doi.org/10.1016/j.omtn.2019.05.001
46. Zhou T, Luo M, Cai W, Zhou S, Feng D, Xu C, et al. Runt-related transcription factor 1 (RUNX1) promotes TGF-beta-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110delta. eBioMedicine 2018;31:217-25. DOI: https://doi.org/10.1016/j.ebiom.2018.04.023
47. Peng M, Zheng Z, Chen S, Fang L, Feng R, Zhang L, et al. Sensitization of non-small cell lung cancer cells to gefitinib and reversal of epithelial-mesenchymal transition by aloe-emodin via PI3K/Akt/TWIS1 signal blockage. Front Oncol 2022;12:908031. DOI: https://doi.org/10.3389/fonc.2022.908031
48. Ma JW, Hung CM, Lin YC, Ho CT, Kao JY, Way TD. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget 2016;7:58915-30. DOI: https://doi.org/10.18632/oncotarget.10410
49. Zhu X, Li Q, Hu G, Wang J, Hu Q, Liu Z, et al. BMS‑345541 inhibits airway inflammation and epithelial‑mesenchymal transition in airway remodeling of asthmatic mice. Int J Mol Med 2018;42:1998-2008. DOI: https://doi.org/10.3892/ijmm.2018.3762
50. Wang J, Hu K, Cai X, Yang B, He Q, Wang J, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022;12:18-32. DOI: https://doi.org/10.1016/j.apsb.2021.07.023
51. Qin W, Cao L, Massey IY. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021;476:4045-59. DOI: https://doi.org/10.1007/s11010-021-04219-w
52. Liu B, Lin J, Bai L, Zhou Y, Lu R, Zhang P, et al. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3beta pathway. Front Pharmacol 2019;10:978. DOI: https://doi.org/10.3389/fphar.2019.00978
53. Hong H, Chen F, Qiao Y, Yan Y, Zhang R, Zhu Z, et al. GSK-3beta activation index is a potential indicator for recurrent inflammation of chronic rhinosinusitis without nasal polyps. J Cell Mol Med 2017;21:3633-40. DOI: https://doi.org/10.1111/jcmm.13274
54. Hung PH, Hsu YC, Chen TH, Ho C, Lin CL. The histone demethylase inhibitor GSK-J4 is a therapeutic target for the kidney fibrosis of diabetic kidney disease via DKK1 modulation. Int J Mol Sci 2022;23:9407. DOI: https://doi.org/10.3390/ijms23169407
55. Ren J, Wei H, Sun J, Feng X, Zhang Y, Yuan H, et al. GSK3beta-dependent lysosome biogenesis: An effective pathway to mitigate renal fibrosis with LM49. Front Pharmacol 2022;13:925489. DOI: https://doi.org/10.3389/fphar.2022.925489
56. Zhao JH. Mesangial cells and renal fibrosis. Adv Exp Med Biol 2019;1165:165-94. DOI: https://doi.org/10.1007/978-981-13-8871-2_9
57. Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed Pharmacother 2020;131:110655. DOI: https://doi.org/10.1016/j.biopha.2020.110655
58. Liao Y, Tan RZ, Li JC, Liu TT, Zhong X, Yan Y, et al. Isoliquiritigenin attenuates UUO-induced renal inflammation and fibrosis by inhibiting Mincle/Syk/NF-kappa B signaling pathway. Drug Des Devel Ther 2020;14:1455-68. DOI: https://doi.org/10.2147/DDDT.S243420

Ethics Approval

Animal experiments in this study were conducted in accordance with the protocols approved by the Ethics Committee for Laboratory Animal Welfare of China-Japan Friendship Hospital

Supporting Agencies

This work was supported by the National Natural Science Foundation of China (No. 82274489), the Beijing Natural Science Foundation of China (No. 7232326) and the Heilongjiang Provincial Natural Science Foundation of China (No. LH2021H070).

Data Availability Statement

The data supporting the findings of this study are available from the corresponding author upon reasonable request

How to Cite



1.
Chen M, Zhu W, Chen Y, Shang J, Wang W, Yan X, et al. Aloe-emodin ameliorates chronic kidney disease fibrosis by inhibiting PI3K-mediated signaling pathway. Eur J Histochem [Internet]. 2025 Aug. 6 [cited 2026 Jan. 19];69(3). Available from: https://www.ejh.it/ejh/article/view/4228