Articles

circRNA-79530 regulates Twist-mediated mitochondrial damage via sponging miR-214 affecting hypoxia/reoxygenation-induced injury in H9c2 cardiomyocytes

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 22 August 2025
216
Views
167
Downloads
1
HTML

Authors

Cardiomyocyte injury related to hypoxia/reoxygenation (H/R) is pivotal in myocardial infarction. The circular RNA circRNA-79530 (circ79530) may play a regulatory role in this process, though its exact function has yet to be elucidated. This research explores the role of circRNA-79530 in H9c2 cells under H/R, with a particular focus on its interactions with miR-214 and the transcription factor Twist. It also examines their subsequent effects on mitochondrial function and oxidative stress. H9c2 cardiomyocytes were subjected to H/R to model myocardial injury. We measured circRNA-79530, miR-214, and Twist levels via RT-qPCR, with Twist protein via Western blotting. ROS levels were quantified using DCFH-DA, and cell viability and injuries were assessed through CCK-8, LDH, SOD, and MDA assays, respectively. Mitochondrial performance was assessed through various methods, including the measurement of mitochondrial membrane potential using JC-1 staining, the quantification of ATP levels, and the examination of the protein levels of mitochondrial complexes, as well as the expression of fusion proteins. Our findings indicated that downregulation of circRNA-79530 modulated miR-214 and Twist expression, influencing mitochondrial dynamics and ROS production. Knockdown of circRNA-79530 improved cell viability, reduced oxidative stress and enhanced mitochondrial function. Additionally, overexpression of miR-214 mitigated Twist expression, further supporting the effect of miR-214 in H/R conditions. circRNA-79530 could worsen oxidative stress and mitochondrial dysfunction, and regulate Twist-mediated mitochondrial damage via sponging miR-214 in H9c2 cells under H/R conditions.

Downloads

Download data is not yet available.

Citations

1. Lavie CJ. Progress in Cardiovascular Diseases Statistics 2022. Prog Cardiovasc Dis 2022;73:94-5. DOI: https://doi.org/10.1016/j.pcad.2022.08.005
2. Saunders-Hastings P, Heong SW, Srichaikul J, Wong HL, Shoaibi A, Chada K et al. Acute myocardial infarction: Development and application of an ICD-10-CM-based algorithm to a large U.S. healthcare claims-based database. PLoS One 2021;16:e0253580. DOI: https://doi.org/10.1371/journal.pone.0253580
3. Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA et al. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord 2023;23:206. DOI: https://doi.org/10.1186/s12872-023-03231-w
4. Nairismägi ML, Vislovukh A, Meng Q, Kratassiouk G, Beldiman C, Petretich M et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene 2012;31:4960-6. DOI: https://doi.org/10.1038/onc.2011.650
5. He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L et al. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med 2022;23:430. DOI: https://doi.org/10.3892/etm.2022.11357
6. Neri M, Riezzo I, Pascale N, Pomara C, Turillazzi E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediators Inflamm 2017;2017:7018393. DOI: https://doi.org/10.1155/2017/7018393
7. Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med 2023;33:357-66. DOI: https://doi.org/10.1016/j.tcm.2022.02.005
8. Boag SE, Andreano E, Spyridopoulos I. Lymphocyte Communication in Myocardial Ischemia/Reperfusion Injury. Antioxid Redox Signal 2017;26:660-75. DOI: https://doi.org/10.1089/ars.2016.6940
9. Kim HS, Yeung J. Psoriasis appearing after dupilumab therapy in atopic dermatitis: A case report. SAGE Open Med Case Rep 2020;8:2050313x20940458. DOI: https://doi.org/10.1177/2050313X20940458
10. Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 2020;174:112347. DOI: https://doi.org/10.1016/j.phytochem.2020.112347
11. Fan H, He Z, Huang H, Zhuang H, Liu H, Liu X et al. Mitochondrial Quality Control in Cardiomyocytes: A Critical Role in the Progression of Cardiovascular Diseases. Front Physiol 2020;11:252. DOI: https://doi.org/10.3389/fphys.2020.00252
12. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 2020;57:102884. DOI: https://doi.org/10.1016/j.ebiom.2020.102884
13. Li A, Gao M, Jiang W, Qin Y, Gong G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front Cell Dev Biol 2020;8:584800. DOI: https://doi.org/10.3389/fcell.2020.584800
14. Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2014;30:513-23. DOI: https://doi.org/10.3109/02656736.2014.971446
15. Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R et al. ROS production by mitochondria: function or dysfunction? Oncogene 2024;43:295-303. DOI: https://doi.org/10.1038/s41388-023-02907-z
16. Dong P, Liu K, Han H. The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury. Curr Protein Pept Sci 2022;23:535-47. DOI: https://doi.org/10.2174/1389203723666220817085941
17. Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK et al. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023;37:571-84. DOI: https://doi.org/10.1007/s10557-022-07362-8
18. Ma L, Zhang Z, Dong K, Ma Y. TWIST1 Alleviates Hypoxia-induced Damage of Trophoblast Cells by inhibiting mitochondrial apoptosis pathway. Exp Cell Res 2019;385:111687. DOI: https://doi.org/10.1016/j.yexcr.2019.111687
19. Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S et al. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 2009;75:1278-87. DOI: https://doi.org/10.1038/ki.2009.62
20. Saaoud F, Drummer IVC, Shao Y, Sun Y, Lu Y, Xu K et al. Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. Pharmacol Ther 2021;220:107715. DOI: https://doi.org/10.1016/j.pharmthera.2020.107715
21. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci 2020;21. DOI: https://doi.org/10.3390/ijms21051723
22. Huang C, Qu Y, Feng F, Zhang H, Shu L, Zhu X et al. Cardioprotective Effect of circ_SMG6 Knockdown against Myocardial Ischemia/Reperfusion Injury Correlates with miR-138-5p-Mediated EGR1/TLR4/TRIF Inactivation. Oxid Med Cell Longev 2022;2022:1927260. DOI: https://doi.org/10.1155/2022/1927260
23. Tang WQ, Yang FR, Chen KM, Yang H, Liu Y, Dou B. CircZNF609 Aggravated Myocardial Ischemia Reperfusion Injury via Mediation of miR-214-3p/PTGS2 Axis. Korean Circ J 2022;52:680-96. DOI: https://doi.org/10.4070/kcj.2021.0252
24. Li F, Zhang L, Li W, Deng J, Zheng J, An M et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 2015;6:6001-13. DOI: https://doi.org/10.18632/oncotarget.3469
25. Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. Febs j 2012;279:2393-8. DOI: https://doi.org/10.1111/j.1742-4658.2012.08618.x
26. Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJ et al. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017;8:13509-20. DOI: https://doi.org/10.18632/oncotarget.14586
27. Sun L, Wang H, Yu S, Zhang L, Jiang J, Zhou Q. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int J Mol Med 2022;49. DOI: https://doi.org/10.3892/ijmm.2021.5072
28. Li S, Chen Y, Jia Y, Xue T, Hou X, Zhao Z. Transcription factor JDP2 activates PDE4B to participate in hypoxia/reoxygenation-induced H9c2 cell injury. Exp Ther Med 2022;23:340. DOI: https://doi.org/10.3892/etm.2022.11270
29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. DOI: https://doi.org/10.1006/meth.2001.1262
30. Sun Z, Wu J, Bi Q, Wang W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res Ther 2022;13:297. DOI: https://doi.org/10.1186/s13287-022-02986-x
31. Wlodkowic D, Skommer J, Darzynkiewicz Z. Flow cytometry-based apoptosis detection. Methods Mol Biol 2009;559:19-32. DOI: https://doi.org/10.1007/978-1-60327-017-5_2
32. Ren J, Chen W, Zhou Y, Sun J, Jiang G. The novel circRNA circ_0045881 inhibits cell proliferation and invasion by targeting mir-214-3p in triple-negative breast cancer. BMC Cancer 2024;24:278. DOI: https://doi.org/10.1186/s12885-024-12007-0
33. Elefantova K, Lakatos B, Kubickova J, Sulova Z, Breier A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int J Mol Sci 2018;19. DOI: https://doi.org/10.3390/ijms19071985
34. Agbabiaka TB, Spencer NH, Khanom S, Goodman C. Prevalence of drug-herb and drug-supplement interactions in older adults: a cross-sectional survey. Br J Gen Pract 2018;68:e711-e7. DOI: https://doi.org/10.3399/bjgp18X699101
35. Saikumar P, Dong Z, Weinberg JM, Venkatachalam MA. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene 1998;17:3341-9. DOI: https://doi.org/10.1038/sj.onc.1202579
36. Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation. Mol Biol Rep 2024;51:473. DOI: https://doi.org/10.1007/s11033-024-09261-7
37. Zhou Y, Qiu T, Wang T, Yu B, Xia K, Guo J et al. Research progress on the role of mitochondria in the process of hepatic ischemia-reperfusion injury. Gastroenterol Rep (Oxf) 2024;12:goae066. DOI: https://doi.org/10.1093/gastro/goae066
38. Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb Protoc 2018;2018. DOI: https://doi.org/10.1101/pdb.prot095497
39. Yu Y, Fang H, Qiu Z, Xia Z, Zhou B. DHA Attenuates Hypoxia/Reoxygenation Injury by Activating SSeCKS in Human Cerebrovascular Pericytes. Neurochem Res 2020;45:310-21. DOI: https://doi.org/10.1007/s11064-019-02915-0
40. Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021;26:163-83. DOI: https://doi.org/10.1007/s10495-021-01661-5
41. Liu C, Luo J, Zhao YT, Wang ZY, Zhou J, Huang S et al. TWIST1 upregulates miR-214 to promote epithelial-to-mesenchymal transition and metastasis in lung adenocarcinoma. Int J Mol Med 2018;42:461-70. DOI: https://doi.org/10.3892/ijmm.2018.3630
42. Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. J Clin Invest 2012;122:1222-32. DOI: https://doi.org/10.1172/JCI59327
43. Liu Y, Meng F, Wang J, Liu M, Yang G, Song R et al. A Novel Oxoglutarate Dehydrogenase-Like Mediated miR-214/TWIST1 Negative Feedback Loop Inhibits Pancreatic Cancer Growth and Metastasis. Clin Cancer Res 2019;25:5407-21. DOI: https://doi.org/10.1158/1078-0432.CCR-18-4113
44. Amin MMJ, Trevelyan CJ, Turner NA. MicroRNA-214 in Health and Disease. Cells 2021;10. DOI: https://doi.org/10.3390/cells10123274
45. Liu Y, Liu Z, Ren Z, Han Q, Chen X, Han J et al. NDUFA9 and its crotonylation modification promote browning of white adipocytes by activating mitochondrial function in mice. Int J Biochem Cell Biol 2024;171:106583. DOI: https://doi.org/10.1016/j.biocel.2024.106583
46. Liang Y, Plourde A, Bueler SA, Liu J, Brzezinski P, Vahidi S et al. Structure of mycobacterial respiratory complex I. Proc Natl Acad Sci U S A 2023;120:e2214949120. DOI: https://doi.org/10.1073/pnas.2214949120
47. Zhen C, Li J, Liu J, Lyu Y, Xie L, Lv H. Phenethyl isothiocyanate induces oxidative cell death in osteosarcoma cells with regulation on mitochondrial network, function and metabolism. Biochim Biophys Acta Mol Basis Dis 2023;1869:166740. DOI: https://doi.org/10.1016/j.bbadis.2023.166740
48. Burgener AV, Bantug GR, Meyer BJ, Higgins R, Ghosh A, Bignucolo O et al. SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2. Nat Immunol 2019;20:1311-21. DOI: https://doi.org/10.1038/s41590-019-0482-2
49. Chang J, Jung HJ, Jeong SH, Kim HK, Han J, Kwon HJ. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2014;455:290-7. DOI: https://doi.org/10.1016/j.bbrc.2014.11.005
50. Vidali S, Chéret J, Giesen M, Haeger S, Alam M, Watson REB et al. Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis. J Invest Dermatol 2016;136:2003-12. DOI: https://doi.org/10.1016/j.jid.2016.05.118
51. Pei H, Li Y, Liu M, Chen Y. Targeting Twist expression with small molecules. Medchemcomm 2017;8:268-75. DOI: https://doi.org/10.1039/C6MD00561F

Supporting Agencies

Regional Fund Project of the National Natural Science Foundation, Kunming Medical University, Science and Technology Office of Yunnan, Yunnan Province "Ten Thousand People Plan" - Famous Doctor Special Program

How to Cite



1.
Yu Z, Xu W, Teng Y, Li T, Guo R, Li J, et al. circRNA-79530 regulates Twist-mediated mitochondrial damage via sponging miR-214 affecting hypoxia/reoxygenation-induced injury in H9c2 cardiomyocytes. Eur J Histochem [Internet]. 2025 Aug. 22 [cited 2025 Dec. 28];69(3). Available from: https://www.ejh.it/ejh/article/view/4230

Share