Articles

Effects of Notch signaling on proliferation, angiogenesis, and adipogenesis of hemangioma-derived stem cells

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 1 September 2025
224
Views
179
Downloads
0
HTML

Authors

Hemangioma-derived stem cells (Hem-SCs) constitute the cellular basis for adipogenesis during infantile hemangioma (IH) regression, with Notch signaling implicated in this process. To elucidate Notch's role in Hem-SCs biology, we isolated primary Hem-SCs from proliferative-phase IH specimens and validated their stem cell characteristics. Three days post-intervention with the γ-secretase inhibitor DAPT (N‑[N‑(3,5‑difluorophenacetyl)‑L‑alanyl]‑S‑phenylglycine t‑butylester), we assessed Notch and PI3K/AKT signaling dynamics while concurrently measuring vascular endothelial growth factor receptor (VEGFR) protein expression. Cellular proliferation was quantified via CCK-8 assay. During adipogenic differentiation (Day 14), RTqPCR evaluated Notch pathway genes (Notch1, Jagged1, Hes1), while adipogenic commitment was determined through Oil Red O staining and adipocyte-specific gene expression (PPARγ, C/EBPα). We demonstrate that DAPT suppresses Notch and PI3K/AKT signaling in Hem-SCs, concomitantly enhancing cellular proliferation and angiogenesis. Simultaneous analysis of VEGFR expression revealed differential DAPT-mediated regulation: VEGFR1 downregulation with concomitant VEGFR2 upregulation. During adipogenic induction, Notch pathway genes (Notch1, Jagged1, Hes1) were significantly downregulated. DAPT treatment further elevated adipogenic markers (PPARγ, C/EBPα) and lipid accumulation. Crucially, co-administration of the PI3K activator 740Y-P reversed DAPT-induced adipogenesis. Mechanistically, Notch inhibition promotes Hem-SCs proliferation, angiogenesis, and adipocyte differentiation by attenuating PI3K/AKT signaling.

Downloads

Download data is not yet available.

Citations

1. Jung HL. Update on infantile hemangioma. Clin Exp Pediatr. 2021;64:559-72. DOI: https://doi.org/10.3345/cep.2020.02061
2. Lewis D, Vaidya R. Congenital and infantile hepatic hemangioma. StatPearls. Treasure Island, StatPearls Publishing; 2025.
3. Kowalska M, Dębek W, Matuszczak E. Infantile hemangiomas: An update on pathogenesis and treatment. J Clin Med 2021;10:4631. DOI: https://doi.org/10.3390/jcm10204631
4. Sharma A, Gupta M, Mahajan R. Infantile hemangiomas: a dermatologist's perspective. Eur J Pediatr 2024;183:4159-68. DOI: https://doi.org/10.1007/s00431-024-05655-8
5. Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, et al. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024;178:117181. DOI: https://doi.org/10.1016/j.biopha.2024.117181
6. Rešić A, Barčot Z, Habek D, Pogorelić Z, Bašković M. The Evaluation, diagnosis, and management of infantile hemangiomas - A comprehensive review. J Clin Med 2025;14:425. DOI: https://doi.org/10.3390/jcm14020425
7. Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. Prog Mol Biol Transl Sci 2023;199:3-32. DOI: https://doi.org/10.1016/bs.pmbts.2023.02.012
8. Tan JWH, Wylie-Sears J, Seebauer CT, Mulliken JB, Francois M, Holm A, et al. R(+) Propranolol decreases lipid accumulation in hemangioma-derived stem cells. bioRxiv 2024;2024.07.01.601621. DOI: https://doi.org/10.1101/2024.07.01.601621
9. Zinellu A, Mangoni AA. Vascular endothelial growth factor as a potential biomarker in systemic sclerosis: a systematic review and meta-analysis. Front Immunol 2024;15:1442913. DOI: https://doi.org/10.3389/fimmu.2024.1442913
10. Yu E, Kim H, Park H, Hong JH, Jin J, Song Y,et al. Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration. Sci Rep 2024;14:25682. DOI: https://doi.org/10.1038/s41598-024-76258-4
11. Mukherjee T, Pattnaik A, Sahu SS. Analyzing VEGFA/VEGFR1 Interaction: application of the resonant recognition model-stockwell transform method to explore potential therapeutics for angiogenesis-related diseases. Protein J 2024;43:697-710. DOI: https://doi.org/10.1007/s10930-024-10219-8
12. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022;7:95. DOI: https://doi.org/10.1038/s41392-022-00934-y
13. Reichrath J, Reichrath S. Notch pathway and inherited diseases: Challenge and promise. In: Reichrath J, Reichrath S, editors. Notch signaling in embryology and cancer. Cham, Springer; 2020. pp. 159-87. DOI: https://doi.org/10.1007/978-3-030-34436-8_9
14. Zhang H, Wei T, Johnson A, Sun R, Richter G, Strub GM. NOTCH pathway activation in infantile hemangiomas. J Vasc Surg Venous Lymphat Disord 2021;9:489-96. DOI: https://doi.org/10.1016/j.jvsv.2020.07.010
15. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023;22:138. DOI: https://doi.org/10.1186/s12943-023-01827-6
16. Chen L, Liu Y, Wang Z, Zhang L, Xu Y, Li Y, et al. Mesenchymal stem cell-derived extracellular vesicles protect against abdominal aortic aneurysm formation by inhibiting NET-induced ferroptosis. Exp Mol Med 2023;55:939-51. DOI: https://doi.org/10.1038/s12276-023-00986-2
17. Ke C, Chen C, Yang M, Chen H, Ke Y, Li L. Inhibition of infantile hemangioma growth and promotion of apoptosis via VEGF/PI3K/AKT axis by 755-nm long-pulse alexandrite laser. Biomed J 2024;47:100675. DOI: https://doi.org/10.1016/j.bj.2023.100675
18. Gui Y, Wang L, Huang Z. MiR-137 inhibits cervical cancer progression via down-modulating Notch1 and inhibiting the PI3K/AKT/mTOR signaling pathway. Transl Cancer Res 2021;10:3748-56. DOI: https://doi.org/10.21037/tcr-21-1049
19. Vo K, Amarasinghe B, Washington K, Gonzalez A, Berlin J, Dang TP. Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol Cancer 2011;10:138. DOI: https://doi.org/10.1186/1476-4598-10-138
20. Harter N, Mancini AJ. Diagnosis and Management of infantile hemangiomas in the neonate. Pediatr Clin North Am 2019;66:437-59. DOI: https://doi.org/10.1016/j.pcl.2018.12.011
21. Wu P, Xu H, Li N, Huo R, Shen B, Lin X, et al. Hypoxia-induced Cyr61/CCN1 production in infantile hemangioma. Plast Reconstr Surg 2021;147:412e-423e. DOI: https://doi.org/10.1097/PRS.0000000000007672
22. Maimaiti A, Aierken Y, Zhou L, He J, Abudureyimu A, Li SX. Inhibiting interleukin-6/signal Transducers and activators of transduction-3/Hypoxia-inducible factor-1α signaling pathway suppressed the growth of infantile hemangioma. Eur J Pediatr Surg 2023;33:158-66. DOI: https://doi.org/10.1055/s-0042-1749436
23. Khan ZA, Boscolo E, Picard A,Psutka S, Melero-Martin JM, Bartch TC, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008;118:2592-9. DOI: https://doi.org/10.1172/JCI33493
24. Boscolo E, Stewart CL, Greenberger S, Wu JK, Durham JT, Herman IM, et al. JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011;31:2181-92. DOI: https://doi.org/10.1161/ATVBAHA.111.232934
25. Edwards AK, Glithero K, Grzesik P, Kitajewski AA, Munabi NCO, Hardy K, et al. NOTCH3 regulates stem-to–mural cell differentiation in infantile hemangioma. JCI Insight 2017;2:e93764. DOI: https://doi.org/10.1172/jci.insight.93764
26. Makkeyah SM, Elseedawy ME, Abdel-Kader HM, Mokhtar GM, Ragab IA. Vascular endothelial growth factor response with propranolol therapy in patients with infantile hemangioma. Pediatr Hematol Oncol 2022;39:215-24. DOI: https://doi.org/10.1080/08880018.2021.1961956
27. Peng J, Li F, Qiu M, Xu X, Liu G, Ou J. Inhibition of hemangioma development by regulating the VEGF/VEGFR autocrine loop via the miR-494/PTEN pathway. Discov Oncol 2025;16:168. DOI: https://doi.org/10.1007/s12672-025-01802-1
28. Jin F, Guan P, Huang L, Zhang A, Gao S, Wang L, et al. DLL4/VEGF bispecific molecularly imprinted nanomissile for robust tumor therapy. Biomaterials 2025;322:123412. DOI: https://doi.org/10.1016/j.biomaterials.2025.123412
29. Semenova D, Bogdanova M, Kostina A, Golovkin A, Kostareva A, Malashicheva A. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 2020;379:169-79. DOI: https://doi.org/10.1007/s00441-019-03130-7
30. Liu B, Wang D, Xiong T, Liu Y, Jing X, Du J,et al. Inhibition of Notch signaling promotes the differentiation of epicardial progenitor cells into adipocytes. Stem Cells Int 2021;2021:8859071. DOI: https://doi.org/10.1155/2021/8859071
31. Teng Y, Fan Y, Ma J, Lu W, Liu N, Chen Y, et al. The PI3K/AKT pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 2021;10:1219. DOI: https://doi.org/10.3390/cells10051219
32. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology 2016;2016:580-8. DOI: https://doi.org/10.1182/asheducation-2016.1.580
33. Xiao YS, Zeng D, Liang YK, Wu Y, Li MF, Qi YZ, et al. Major vault protein is a direct target of Notch1 signaling and contributes to chemoresistance in triple-negative breast cancer cells. Cancer Lett 2019;440-441:156-67. DOI: https://doi.org/10.1016/j.canlet.2018.09.031

Ethics Approval

the protocol of this study was approved by the Ethics Committee of Children's Hospital of Nanjing Medical University

Supporting Agencies

The current study was supported by the Science and Technique Development Foundation of Nanjing Medical University (NMUB2020088).

How to Cite



1.
Wang W, Chen S, Wang Y, Jie C, Shen W. Effects of Notch signaling on proliferation, angiogenesis, and adipogenesis of hemangioma-derived stem cells. Eur J Histochem [Internet]. 2025 Sep. 1 [cited 2025 Dec. 26];69(3). Available from: https://www.ejh.it/ejh/article/view/4241

Share