miR-129-5p regulates HMGB1/RAGE axis to inhibit pyroptosis and ameliorate cervical epithelial cell deterioration
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Data Availability Statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request
Authors
Cervical cancer is a serious gynecological malignancy, and the specific mechanisms of miR-129-5p remain unclear. This study aims to investigate the mechanism by which miR-129-5p regulates the high mobility group box 1 (HMGB1/receptor for advanced glycation end-products (RAGE) axis to inhibit pyroptosis and ameliorate cervical epithelial cell deterioration. Using RT-qPCR and Western blotting, we detected significantly downregulated miR-129-5p and upregulated HMGB1 in cervical cancer cells. To establish a deterioration model, we stimulated cervical epithelial cells with lipopolysaccharide (LPS). Further results revealed that miR-129-5p overexpression markedly reduced HMGB1 expression, suppressed RAGE activation, and decreased pyroptosis executer GSDMD-N production. Additionally, we conducted miR-129-5p overexpression and knockdown experiments to verify its regulatory effects on the HMGB1/RAGE axis and downstream pathways. Caspase-1 activity assays confirmed reduced pyroptosis upon miR-129-5p overexpression. Cell viability and proliferation were assessed using EdU incorporation assays and colony formation experiments. Our data demonstrated significant downregulation of miR-129-5p in cervical cancer cells. Overexpression of miR-129-5p substantially reduced HMGB1 expression and inhibited RAGE activation, thereby decreasing production of the pyroptosis executer GSDMD-N. LPS stimulation potently activated the HMGB1/RAGE axis and induced pyroptosis, while miR-129-5p overexpression inhibited these processes and ameliorated in vitro cervical epithelial cell deterioration. Cells overexpressing miR-129-5p exhibited attenuated caspase-1 activity with enhanced survival and proliferation following LPS treatment. Collectively, these in vitro findings indicate that miR-129-5p suppresses HMGB1/RAGE-mediated pyroptosis and cellular deterioration and also provide new mechanistic insights for cervical cancer therapeutics.
Supporting Agencies
Provincial-Ministry Joint Establishment of State Key Laboratory of Causes and Prevention of High Morbidity in Central AsiaHow to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.