Articles

Guilu Erxian oral liquid mitigates oxidative damage in spermatogonial cells via miR-6739-5p modulation and PI3K/AKT pathway activation: a functional histocytochemical study

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 2 October 2025
230
Views
174
Downloads
20
HTML

Authors

Oxidative stress is a major contributor to male infertility, particularly oligoasthenozoospermia. This study aimed to investigate the cytoprotective mechanism of Guilu Erxian Oral Liquid (GLEX) against H₂O₂-induced oxidative damage in spermatogonial cells, focusing on miR-6739-5p regulation and activation of the PI3K/AKT pathway using histocytochemical approaches. An oxidative stress model was established in rat spermatogonial stem cells (SSCs) with 250 µM H₂O₂. Cell proliferation, apoptosis, reactive oxygen species (ROS) accumulation, and DNA oxidative damage were assessed using EdU incorporation, flow cytometry, immunofluorescence, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. Expression of miR-6739-5p and Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/AKT) pathway components (PIK3CA, p-PI3K, p-AKT) was evaluated by RT-qPCR and Western blotting. The interaction between miR-6739-5p and PIK3CA was confirmed via dual-luciferase reporter assay. The cytoprotective effects of GLEX were examined through pre-treatment and quantified using histochemical and cytological markers. H₂O₂ treatment significantly impaired cell viability, increased apoptosis and ROS production, and upregulated miR-6739-5p. Overexpression of miR-6739-5p exacerbated damage, while silencing reversed it and restored PI3K/AKT signaling. GLEX pretreatment effectively reduced miR-6739-5p expression, restored cell viability, suppressed oxidative and inflammatory markers (ROS, 8-OHdG, TNF-α, IL-1β), and enhanced PI3K/AKT activation. These effects were comparable to PI3K pathway activation. GLEX confers histocytochemical protection to spermatogonial cells under oxidative stress by downregulating miR-6739-5p and activating the PI3K/AKT pathway. This study highlights a novel regulatory mechanism and supports GLEX as a potential therapeutic agent for oxidative stress-associated male infertility.

Downloads

Download data is not yet available.

Citations

1. Lundy SD, Sangwan N, Parekh NV, Selvam M, Gupta S, McCaffrey P, et al. Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. Eur Urol 2021;79:826-36. DOI: https://doi.org/10.1016/j.eururo.2021.01.014
2. Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet 2021;397:319-33. DOI: https://doi.org/10.1016/S0140-6736(20)32667-2
3. Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol 2017;14:470-85. DOI: https://doi.org/10.1038/nrurol.2017.69
4. Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants-Basel 2022;11:306. DOI: https://doi.org/10.3390/antiox11020306
5. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, et al. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol 2012;62:324-32. DOI: https://doi.org/10.1016/j.eururo.2012.04.048
6. Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction 2015;150:R159-74. DOI: https://doi.org/10.1530/REP-15-0261
7. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. Bmc Genomics 2007;8:166. DOI: https://doi.org/10.1186/1471-2164-8-166
8. Forouhari S, Mahmoudi E, Safdarian E, Beygi Z, Gheibihayat SM. MicroRNA: A Potential Diagnosis for Male Infertility. Mini-Rev Med Chem 2021;21:1226-36. DOI: https://doi.org/10.2174/1389557520999201209213319
9. Liang G, Wang Q, Zhang G, Li Z, Wang Q. Differentially expressed miRNAs and potential therapeutic targets for asthenospermia. Andrologia 2022;54:e14265. DOI: https://doi.org/10.1111/and.14265
10. Xu CL, Tan QY, Yang H, Li CY, Wu Z, Ma YF. Melatonin enhances spermatogonia activity through promoting KIAA1429-mediated m(6)A deposition to activate the PI3K/AKT signaling. Reprod Biol 2022;22:100681. DOI: https://doi.org/10.1016/j.repbio.2022.100681
11. Cannarella R, Petralia CMB, Condorelli RA, Aversa A, Calogero AE, La Vignera S. Investigational follicle-stimulating hormone receptor agonists for male infertility therapy. Expert Opin Investig Drugs 2023;32:813-824. DOI: https://doi.org/10.1080/13543784.2023.2263364
12. Yang B, Meng QY, Chen H, Gao YL, Shen J, Mu YY, et al. Clinical effect of acupuncture combined with traditional Chinese medicine in treatment of oligozoospermia/asthenozoospermia: a meta-analysis. [Article in Chinese] Zhen Ci Yan Jiu 2020;45:243-50.
13. Zhao MP, Shi X, Kong G, Wang CC, Wu J, Lin ZX, et al. The Therapeutic Effects of a Traditional Chinese Medicine Formula Wuzi Yanzong Pill for the Treatment of Oligoasthenozoospermia: A Meta-Analysis of Randomized Controlled Trials. Evid-Based Compl Alt 2018;2018:2968025. DOI: https://doi.org/10.1155/2018/6109104
14. Ren J. Clinical study on the treatment of oligoasthenozoospermia with kidney deficiency syndrome by Guilu Erxian Paste [D]. Hunan University of Chinese Medicine, 2023. (Master's thesis.) DOI: 10.27138/d.cnki.ghuzc.2023.000589.
15. Ding J, Lu B, Liu L, Zhong Z, Wang N, Li B, et al. Guilu-Erxian-Glue alleviates Tripterygium wilfordii polyglycoside-induced oligoasthenospermia in rats by resisting ferroptosis via the Keap1/Nrf2/GPX4 signaling pathway. Pharm Biol 2023;61:213-27. DOI: https://doi.org/10.1080/13880209.2023.2165114
16. Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, et al. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev-an 2024;60:805-14. DOI: https://doi.org/10.1007/s11626-024-00857-8
17. Vorilhon S, Brugnon F, Kocer A, Dollet S, Bourgne C, Berger M, et al.. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Reprod Biol 2018;33:553-562. DOI: https://doi.org/10.1093/humrep/dey038
18. Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci 2020;21:3743. DOI: https://doi.org/10.3390/ijms21113743
19. Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem 2017;86:715-48. DOI: https://doi.org/10.1146/annurev-biochem-061516-045037
20. Hussain T, Kandeel M, Metwally E, Murtaza G, Kalhoro DH, Yin Y, et al. Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Front Endocrinol 2023;14:1070692. DOI: https://doi.org/10.3389/fendo.2023.1070692
21. Pena FJ, O'Flaherty C, Ortiz RJ, Martin CF, Gaitskell-Phillips GL, Gil MC, et al. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants-Basel 2019;8:567. DOI: https://doi.org/10.3390/antiox8110567
22. S FM, Palomares R, Hurley D, Bullington AC, Hoyos-Jaramillo A, H BJ. Antisperm antibodies and sperm function in bulls undergoing scrotal insulation. Reproduction 2020;160:783-92. DOI: https://doi.org/10.1530/REP-20-0207
23. Bromfield EG, Aitken RJ, McLaughlin EA, Nixon B. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol Hum Reprod 2017;23:91-105. DOI: https://doi.org/10.1093/molehr/gaw074
24. Salas-Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology-Us 2020;8:7-26. DOI: https://doi.org/10.1111/andr.12714
25. Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The Role of MicroRNAs in Mammalian Fertility: From Gametogenesis to Embryo Implantation. Int J Mol Sci 2020;21:585. DOI: https://doi.org/10.3390/ijms21020585
26. Yang CX, Yang YW, Mou Q, Chen L, Huo LJ, Du ZQ. Global Alteration of microRNA Expression in Immature Boar Sertoli Cells Following Vitamin C Treatment. Theriogenology. 2022;183:1–9. DOI: https://doi.org/10.1016/j.theriogenology.2022.02.005
27. Cai B, Zheng Y, Ma S, Xing Q, Wang X, Yang B, et al. Long non‑coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep 2018;17:5477-83. DOI: https://doi.org/10.3892/mmr.2018.8546
28. Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022;37:621-36.
29. Zhou Y, Dong X, Xing Y, Wang R, Yang S, Han Y, Wang D. Effects of electroacupuncture therapy on intractable facial paralysis: A systematic review and meta-analysis. PLoS One 2023;18:e0288606. DOI: https://doi.org/10.1371/journal.pone.0288606
30. Song W, Zheng S, Li M, Zhang X, Cao R, Ye C, et al. Linking endotypes to omics profiles in difficult-to-control asthma using the diagnostic Chinese medicine syndrome differentiation algorithm. J Asthma 2020;57:532-42. DOI: https://doi.org/10.1080/02770903.2019.1590589
31. Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, et al. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022;13:815479. DOI: https://doi.org/10.3389/fphar.2022.815479
32. Zheng YF, Bai X, Tang YB, Liu GM, Liu D, Fan XL, et al. Academician Wang Qi's medication rules for oligoasthenozoospermia: An analysis based on the Traditional Chinese Medicine Inheritance Auxiliary Platform. [Article in Chinese] Zhonghua Nan Ke Xue 2020;26:532-42.

How to Cite



1.
Sun Z, Fan X, Liu Z. Guilu Erxian oral liquid mitigates oxidative damage in spermatogonial cells via miR-6739-5p modulation and PI3K/AKT pathway activation: a functional histocytochemical study. Eur J Histochem [Internet]. 2025 Oct. 2 [cited 2026 Jan. 19];69(4). Available from: https://www.ejh.it/ejh/article/view/4253