Articles

miR-199a-5p inhibited HIF-1α to suppress the proliferation, migration, and differentiation of cardiac stem cells

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 22 September 2025
223
Views
176
Downloads
3
HTML

Data Availability Statement

the dataset generated or analyzed in this study are available from the corresponding author on reasonable request.

Authors

The cardiac stem cells (CSCs) are essential in improving myocardial infarction (MI). Although miR-199a-5p and hypoxia-inducible factor-1 alpha (HIF-1α) were proven to participate in the process of heart repair, the related mechanisms are still unclear. This study aimed to explore the effects of miR-199a-5p and HIF-1α on c-kit+ cells and their regulatory mechanisms. After isolating, purifying, and identifying CSCs (c-kit+ cells) from mice, they were subjected to a hypoxia model. After the c-kit+ cells were transfected with corresponding transfectants, the CCK-8, EdU staining, and wound healing approaches were used to evaluate their cell viability, proliferation, and migration. The targeted relation between miR-199a-5p and HIF-1α was determined using a dual-luciferase reporter. Immunofluorescence staining, RT-qPCR, and Western blot approaches were employed to determine Nkx2.5, CD31, α-SMA, miR-199a-5p, and HIF-1α expression. Overexpressing miR-199a-5p and knocking down HIF-1α both inhibited the cell viability (p<0.01), reduced the proliferation (p<0.05), suppressed the migration (p<0.001), and down-regulated the Nkx2.5, CD31, and α-SMA expression of c-kit+ cells (p<0.05). Overexpressing HIF-1α effectively reversed the effects of overexpressing miR-199a-5p on c-kit+ cells (p<0.05). Taken together, miR-199a-5p negatively targeted HIF-1α to inhibit the proliferation, migration, and differentiation of c-kit+ cells.

Downloads

Download data is not yet available.

Citations

1. Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J 2022;43:2549-61. DOI: https://doi.org/10.1093/eurheartj/ehac223
2. Wilcox JE, Fang JC, Margulies KB, Mann DL. Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol 2020;76:719-34. DOI: https://doi.org/10.1016/j.jacc.2020.05.075
3. Guglin M, Zucker MJ, Borlaug BA, Breen E, Cleveland J, Johnson MR, et al. Evaluation for heart transplantation and LVAD implantation: JACC council perspectives. J Am Coll Cardiol 2020;75:1471-87. DOI: https://doi.org/10.1016/j.jacc.2020.01.034
4. Hou J, Wang L, Jiang J, Zhou C, Guo T, Zheng S, et al. Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev Rep 2013;9:326-38. DOI: https://doi.org/10.1007/s12015-012-9421-4
5. Mancuso A, Barone A, Cristiano MC, Cianflone E, Fresta M, Paolino D. Cardiac stem cell-loaded delivery systems: a new challenge for myocardial tissue regeneration. Int J Mol Sci 2020;21:7701. DOI: https://doi.org/10.3390/ijms21207701
6. Matsa E, Sallam K, Wu JC. Cardiac stem cell biology: glimpse of the past, present, and future. Circ Res 2014;114:21-7. DOI: https://doi.org/10.1161/CIRCRESAHA.113.302895
7. Wang K, Ding R, Ha Y, Jia Y, Liao X, Wang S, et al. Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1alpha/Jagged1/Notch1 signaling. Acta Pharm Sin B 2018;8:795-804. DOI: https://doi.org/10.1016/j.apsb.2018.06.003
8. Hnatiuk AP, Ong SG, Olea FD, Locatelli P, Riegler J, Lee WH, et al. Allogeneic mesenchymal stromal cells overexpressing mutant human hypoxia-inducible factor 1-alpha (HIF1-alpha) in an ovine model of acute myocardial infarction. J Am Heart Assoc 2016;5:e003714. DOI: https://doi.org/10.1161/JAHA.116.003714
9. Cheng Y, Feng Y, Xia Z, Li X, Rong J. omega-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1alpha and iNOS. Bba-Mol Cell Biol L 2017;1862:1595-605. DOI: https://doi.org/10.1016/j.bbalip.2017.09.009
10. Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 2019;569:418-22. DOI: https://doi.org/10.1038/s41586-019-1191-6
11. Chen Y, Li S, Zhang Y, Wang M, Li X, Liu S, et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol 2021;41:101910. DOI: https://doi.org/10.1016/j.redox.2021.101910
12. Zheng H, Huang S, Wei G, Sun Y, Li C, Si X, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther 2022;30:3477-98. DOI: https://doi.org/10.1016/j.ymthe.2022.06.016
13. Li B, Meng X, Zhang L. microRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2019;24:233-40. DOI: https://doi.org/10.1016/j.drudis.2018.05.032
14. Huang H, Xie S, Gu X, Xiang B, Zhong Z, Huang P, et al. Higher circulating miR-199a-5p indicates poor aerobic exercise capacity and associates with cardiovascular dysfunction during chronic exposure to high altitude. Front Physiol 2021;12:587241. DOI: https://doi.org/10.3389/fphys.2021.587241
15. Hu J, Huang X, Zheng L, Zhang Y, Zeng H, Nie L, et al. MiR-199a-5P promotes osteogenic differentiation of human stem cells from apical papilla via targeting IFIT2 in apical periodontitis. Front Immunol 2023;14:1149339. DOI: https://doi.org/10.3389/fimmu.2023.1149339
16. Geng Y, Hua H, Xia Y, Zhou J, He J, Xu X, et al. miR-199a-5p modulates choroidal neovascularization by regulating Wnt7b/Wnt/β-catenin signaling pathway. J Mol Histol 2024;55:359-70. DOI: https://doi.org/10.1007/s10735-024-10194-5
17. Chen Y, Liu S, Liang Y, He Y, Li Q, Zhan J, et al. Single dose of intravenous miR199a-5p delivery targeting ischemic heart for long-term repair of myocardial infarction. Nat Commun 2024;15:5565. DOI: https://doi.org/10.1038/s41467-024-49901-x
18. Asensio-Lopez MC, Sassi Y, Soler F, Fernandez DPM, Pascual-Figal D, Lax A. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Sci Rep-Uk 2021;11:3915. DOI: https://doi.org/10.1038/s41598-021-82745-9
19. Lampert MA, Orogo AM, Najor RH, Hammerling BC, Leon LJ, Wang BJ, et al. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy 2019;15:1182-98. DOI: https://doi.org/10.1080/15548627.2019.1580095
20. Li J, Song F, Chen R, Yang J, Liu J, Huang L, et al. Bradykinin-pretreated human cardiac-specific c-kit(+) cells enhance exosomal miR-3059-5p and promote angiogenesis against hindlimb ischemia in mice. Stem Cell Rev Rep 2023;19:2481-96. DOI: https://doi.org/10.1007/s12015-023-10591-5
21. Feng J, Zhan J, Ma S. LRG1 promotes hypoxia-induced cardiomyocyte apoptosis and autophagy by regulating hypoxia-inducible factor-1alpha. Bioengineered 2021;12:8897-907. DOI: https://doi.org/10.1080/21655979.2021.1988368
22. Cimini M, Fazel S, Zhuo S, Xaymardan M, Fujii H, Weisel RD, et al. c-kit dysfunction impairs myocardial healing after infarction. Circulation 2007;116:I77-82. DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.708107
23. Gude NA, Sussman MA. Chasing c-Kit through the heart: Taking a broader view. Pharmacol Res 2018;127:110-5. DOI: https://doi.org/10.1016/j.phrs.2017.06.007
24. Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, et al. Diverging targets mediate the pathological role of miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. Mol Ther-Nucl Acids 2021;26:1035-50. DOI: https://doi.org/10.1016/j.omtn.2021.10.013
25. Phatak P, Tulapurkar ME, Burrows WM, Donahue JM. MiR-199a-5p decreases esophageal cancer cell proliferation partially through repression of Jun-B. Cancers 2023;15:4811. DOI: https://doi.org/10.3390/cancers15194811
26. Xu M, Zhang J, Lu X, Liu F, Shi S, Deng X. MiR-199a-5p-regulated SMARCA4 promotes oral squamous cell carcinoma tumorigenesis. Int J Mol Sci 2023;24:4756. DOI: https://doi.org/10.3390/ijms24054756
27. Garcia-Elias A, Tajes M, Yanez-Bisbe L, Enjuanes C, Comin-Colet J, Serra SA, et al. Atrial fibrillation in heart failure is associated with high levels of circulating microRNA-199a-5p and 22-5p and a defective regulation of intracellular calcium and cell-to-cell communication. Int J Mol Sci 2021;22:10377. DOI: https://doi.org/10.3390/ijms221910377
28. Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, et al. Hsa-miR-199a-5p protect cell injury in hypoxia induces myocardial cells via targeting HIF1alpha. Mol Biotechnol 2022;64:482-92. DOI: https://doi.org/10.1007/s12033-021-00423-7
29. Mobus S, Yang D, Yuan Q, Ludtke TH, Balakrishnan A, Sgodda M, et al. MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. J Hepatol 2015;62:101-10. DOI: https://doi.org/10.1016/j.jhep.2014.08.016
30. Lu RH, Xiao ZQ, Zhou JD, Yin CQ, Chen ZZ, Tang FJ, et al. MiR-199a-5p represses the stemness of cutaneous squamous cell carcinoma stem cells by targeting Sirt1 and CD44ICD cleavage signaling. Cell Cycle 2020;19:1-14. DOI: https://doi.org/10.1080/15384101.2019.1689482
31. Pan J, Zhang L, Li D, Li Y, Lu M, Hu Y, et al. Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. Eur J Pharmacol 2024;963:176277. DOI: https://doi.org/10.1016/j.ejphar.2023.176277
32. Li S, Li S. Effects of transplantation of hypoxia-inducible factor-1alpha gene-modified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction. Anatol J Cardiol 2018;20:318-29. DOI: https://doi.org/10.14744/AnatolJCardiol.2018.91979
33. Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K. Hypoxia enhances proliferation of human adipose-derived stem cells via HIF-1a activation. Plos One 2015;10:e0139890. DOI: https://doi.org/10.1371/journal.pone.0139890
34. Boso D, Rampazzo E, Zanon C, Bresolin S, Maule F, Porcu E, et al. HIF-1alpha/Wnt signaling-dependent control of gene transcription regulates neuronal differentiation of glioblastoma stem cells. Theranostics 2019;9:4860-77. DOI: https://doi.org/10.7150/thno.35882
35. Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol 2011;50:296-303. DOI: https://doi.org/10.1016/j.yjmcc.2010.07.006
36. Toledo-Flores D, Williamson A, Schwarz N, Fernando S, Dimasi C, Witt TA, et al. Vasculogenic properties of adventitial Sca-1(+)CD45(+) progenitor cells in mice: a potential source of vasa vasorum in atherosclerosis. Sci Rep 2019;9:7286. DOI: https://doi.org/10.1038/s41598-019-43765-8
37. Camberos V, Baio J, Mandujano A, Martinez AF, Bailey L, Hasaniya N, et al. The impact of spaceflight and microgravity on the human Islet-1+ cardiovascular progenitor cell transcriptome. Int J Mol Sci 2021;22:3577. DOI: https://doi.org/10.3390/ijms22073577
38. Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, et al. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021;23:352. DOI: https://doi.org/10.3892/mmr.2021.11991

Ethics Approval

this study was approved by the Animal Ethics Committee of Hebei General Hospital Animal Center (Approval no. HG-23-EC-107). The experiments were approved by the Animal Care and Utilization Committee of Hebei General Hospital

How to Cite



1.
Li S, Zhang C, Liu Y, Meng C, Xie Y, Li S. miR-199a-5p inhibited HIF-1α to suppress the proliferation, migration, and differentiation of cardiac stem cells. Eur J Histochem [Internet]. 2025 Sep. 22 [cited 2025 Dec. 28];69(4). Available from: https://www.ejh.it/ejh/article/view/4239

Share